首页> 外文期刊>Numerical Algorithms >A Kantorovich-type convergence analysis of the Newton–Josephy method for solving variational inequalities
【24h】

A Kantorovich-type convergence analysis of the Newton–Josephy method for solving variational inequalities

机译:牛顿-乔斯菲法解变分不等式的Kantorovich型收敛性分析

获取原文
获取原文并翻译 | 示例

摘要

We present a Kantorovich-type semilocal convergence analysis of the Newton–Josephy method for solving a certain class of variational inequalities. By using a combination of Lipschitz and center-Lipschitz conditions, and our new idea of recurrent functions, we provide an analysis with the following advantages over the earlier works (Wang 2009, Wang and Shen, Appl Math Mech 25:1291–1297, 2004) (under the same or less computational cost): weaker sufficient convergence conditions, larger convergence domain, finer error bounds on the distances involved, and an at least as precise information on the location of the solution.
机译:我们提出了牛顿-约瑟夫方法的Kantorovich型半局部收敛分析,用于解决一类变分不等式。通过结合使用Lipschitz条件和center-Lipschitz条件以及我们的递归函数新思想,我们提供了一种与早期工作相比具有以下优点的分析方法(Wang 2009,Wang and Shen,Appl Math Mech 25:1291-1297,2004 )(在相同或更少的计算成本下):较弱的充分收敛条件,较大的收敛域,所涉及距离的误差范围更小,以及关于解决方案位置的信息至少一样精确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号