首页> 外文期刊>Applied numerical mathematics >Adaptive multiresolution schemes with local time stepping for two-dimensional degenerate reaction-diffusion systems
【24h】

Adaptive multiresolution schemes with local time stepping for two-dimensional degenerate reaction-diffusion systems

机译:二维简并反应扩散系统的具有局部时间步长的自适应多分辨率方案

获取原文
获取原文并翻译 | 示例

摘要

Spatially two-dimensional, possibly degenerate reaction-diffusion systems, with a focus on models of combustion, pattern formation and chemotaxis, are solved by a fully adaptive multiresolution scheme. Solutions of these equations exhibit steep gradients, and in the degenerate case, sharp fronts and discontinuities. This calls for a concentration of computational effort on zones of strong variation.rnThe multiresolution scheme is based on finite volume discretizations with explicit time stepping. The multiresolution representation of the solution is stored in a graded tree ("quadtree"), whose leaves are the non-uniform finite volumes on whose borders the numerical divergence is evaluated. By a thresholding procedure, namely the elimination of leaves with solution values that are smaller than a threshold value, substantial data compression and CPU time reduction is attained. The threshold value is chosen such that the total error of the adaptive scheme is of the same order as that of the reference finite volume scheme.rnSince chemical reactions involve a large range of temporal scales, but are spatially well localized (especially in the combustion model), a locally varying adaptive time stepping strategy is applied. For scalar equations, this strategy has the advantage that consistence with a CFL condition is always enforced. Numerical experiments with five different scenarios, in part with local time stepping, illustrate the effectiveness of the adaptive multiresolution method. It turns out that local time stepping accelerates the adaptive multiresolution method by a factor of two, while the error remains controlled.
机译:通过完全自适应的多分辨率方案解决了空间二维,可能简并的反应扩散系统,重点是燃烧,模式形成和趋化性模型。这些方程的解表现出陡峭的梯度,在退化的情况下,表现出尖锐的前沿和不连续性。这要求将计算工作集中在变化较大的区域上。多分辨率方案基于具有明确时间步长的有限体积离散化。解决方案的多分辨率表示形式存储在分级树(“ quadtree”)中,分级树的叶子是边界不均匀的有限体积,在边界上评估数值差异。通过阈值处理,即消除具有小于阈值的解决方案值的叶子,可以实现大量的数据压缩和CPU时间的减少。选择阈值以使自适应方案的总误差与参考有限体积方案的总误差相同。rn由于化学反应涉及大范围的时间尺度,但在空间上具有很好的局部性(特别是在燃烧模型中) ),则应用局部变化的自适应时间步进策略。对于标量方程,此策略的优点是始终强制遵守CFL条件。在五种不同情况下进行的数值实验(部分采用本地时间步进)说明了自适应多分辨率方法的有效性。事实证明,本地时间步进可将自适应多分辨率方法的速度提高两倍,而误差仍可得到控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号