首页> 外文期刊>Applied numerical mathematics >Deming Least-squares Fit To Multiple Hyperplanes
【24h】

Deming Least-squares Fit To Multiple Hyperplanes

机译:定义最小二乘法适合多个超平面

获取原文
获取原文并翻译 | 示例

摘要

A method is derived to fit a set of multidimensional experimental data points having a priori uncertainties and possibly also covariances in all coordinates to a straight line, plane, or hyperplane of any dimensionality less than the number of coordinates. The least-squares formulation used is that of Deming, which treats all coordinates on an equal basis. Experimentalists needing to fit a linear model to data of this kind have usually performed multiple independent fits in subspaces of the full data space such that each fit has only one dependent coordinate. That procedure does not guarantee mutual consistency of the fits. The present method can be thought of as providing multiple such hyperplane fits in a single simultaneous and therefore consistent solution. As examples, the method is applied to a straight-line fit in three dimensions to synthetic data and to an analysis of xenon isotopes in a lunar rock.
机译:得出一种方法来拟合一组多维实验数据点,这些多维数据点在所有坐标中都具有先验不确定性,并且在所有坐标中还可能具有协方差,而该线性,平面或超平面的任何维数均小于坐标数。使用的最小二乘公式是戴明(Deming)的公式,该公式在相等的基础上对待所有坐标。需要将线性模型拟合到此类数据的实验人员通常已在整个数据空间的子空间中执行了多次独立拟合,因此每次拟合仅具有一个相关坐标。该程序不能保证拟合的相互一致性。可以认为本方法是在单个同时且因此一致的解决方案中提供多个这样的超平面拟合。例如,该方法适用于在三个维度上对合成数据进行直线拟合,并应用于月球岩石中的氙同位素分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号