首页> 外文期刊>Applied numerical mathematics >Non-Fickian delay reaction-diffusion equations: Theoretical and numerical study
【24h】

Non-Fickian delay reaction-diffusion equations: Theoretical and numerical study

机译:非菲克式时滞反应扩散方程:理论和数值研究

获取原文
获取原文并翻译 | 示例

摘要

The Fisher's equation is established combining the Fick's law for the flux and the mass conservation law with a reaction term evaluated at the present time. If this term depends on the solution at some past time, a delay parameter is introduced and the delay Fisher's equation is obtained. Modifying the Fick's law for the flux considering a time memory term, integro-differential equations of Volterra type are established. In this paper we study reaction-diffusion equations obtained combining the two modifications: a time memory term in the flux and a delay parameter in the reaction term. The delay integro-differential equations also known as delay Volterra integro-differential equations, are studied in the theoretical view point: stability estimates are established. Numerical methods which mimic the theoretical models are analysed. Numerical experiments illustrating the established results are also included.
机译:Fisher方程是将通量的Fick定律和质量守恒定律与当前评估的反应项相结合而建立的。如果该术语取决于过去某个时间的解,则引入延迟参数并获得延迟Fisher方程。考虑时间记忆项修改通量的菲克定律,建立了Volterra型积分微分方程。在本文中,我们研究了结合两种修改获得的反应扩散方程:通量中的时间记忆项和反应项中的延迟参数。从理论角度研究了延迟积分微分方程,也称为延迟Volterra积分微分方程:建立了稳定性估计。分析了模拟理论模型的数值方法。还包括说明已建立结果的数值实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号