首页> 外文期刊>Applied numerical mathematics >Direct integrators of Runge-Kutta type for special third-order ordinary differential equations
【24h】

Direct integrators of Runge-Kutta type for special third-order ordinary differential equations

机译:特殊三阶常微分方程的Runge-Kutta型直接积分器

获取原文
获取原文并翻译 | 示例

摘要

This paper is devoted to the investigation of direct integrators of Runge-Kutta type for third-order ordinary differential equations (RKT). A new tri-colored tree theory and the corresponding B-series theory are built systematically, based on which the order conditions for RKT methods are derived. A two-stage explicit RKT method of order four and a three-stage explicit RKT method of order five are constructed. Implicit RKT methods of collocation type are considered. The results of numerical experiments show that our explicit RKT methods are more efficient than the traditional RK methods of the same algebraic order.
机译:本文致力于研究Runge-Kutta型直接积分器的三阶常微分方程(RKT)。系统地建立了新的三色树理论和相应的B系列理论,在此基础上推导了RKT方法的有序条件。构造了一个四阶的两阶段显式RKT方法和一个五阶的三阶段显式RKT方法。考虑隐式RKT搭配类型的方法。数值实验结果表明,我们的显式RKT方法比相同代数阶的传统RK方法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号