首页> 外文期刊>Applied numerical mathematics >A locking-free discontinuous Galerkin method for linear elasticity in locally nearly incompressible heterogeneous media
【24h】

A locking-free discontinuous Galerkin method for linear elasticity in locally nearly incompressible heterogeneous media

机译:局部几乎不可压缩的非均质介质中线性弹性的无锁相间不连续Galerkin方法

获取原文
获取原文并翻译 | 示例

摘要

In this work we consider the problem of numerical locking in composite materials featuring quasi-incompressible and compressible sections. More specifically, we start by extending a classical regularity estimate for the H~1-norm of the divergence of the displacement field to the heterogeneous case. The proof is based on a reformulation of the elasticity problem as a Stokes system with nonzero divergence constraint. This result is then used to design a locking-free discontinuous Galerkin method. The key point is to make sure that the multiplicative constant in the estimate of the convergence rate uniquely depends on this bounded quantity. Thanks to a fine tuning of the penalty term, the lower bound for the penalty parameter appearing in the method is simply expressed in terms of the space dimension. To conclude, numerical validation of the theoretical results is provided.
机译:在这项工作中,我们考虑了具有准不可压缩和可压缩截面的复合材料中的数值锁定问题。更具体地说,我们从将位移场发散的H〜1-范数的经典正则性估计扩展到非均质情况开始。该证明基于对弹性问题的重新表述,即具有非零散度约束的斯托克斯系统。然后将该结果用于设计无锁定的不连续Galerkin方法。关键是要确保收敛速度估计中的乘法常数唯一地取决于该有界数。由于对罚分项进行了微调,该方法中出现的罚分参数的下限仅用空间维数表示。总之,提供了理论结果的数值验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号