首页> 外文期刊>Applied numerical mathematics >Mechanical quadrature methods and their extrapolations for solving the first kind boundary integral equations of Stokes equation
【24h】

Mechanical quadrature methods and their extrapolations for solving the first kind boundary integral equations of Stokes equation

机译:求解斯托克斯方程第一类边界积分方程的机械正交方法及其外推

获取原文
获取原文并翻译 | 示例

摘要

In this article the mechanical quadrature methods (MQMs) and their extrapolations are proposed and analyzed for solving the first kind boundary integral equations of Stokes equation with closed smooth boundary or closed piecewise curved boundary. It is straightforward and cost efficient to obtain the entries in the linear system arising from the MQMs. The condition numbers of the discrete matrices are of only O(h~(-1)) and the MQMs achieve higher accuracy than the collocation and Galerkin methods. The analysis of MQMs is more challenging than that of the collocation and Galerkin methods since its theory is no longer within the framework of the projection theory. In this article the convergence of the MQM solutions and the asymptotic expansions of the MQM solution errors are proved for both of the two types of boundary. In order to further improve the accuracy, a Richardson extrapolation is constructed for the mechanical quadrature solution on the smooth boundary and a splitting extrapolation is constructed for the mechanical quadrature solution on the piecewise curved boundary based on the asymptotic expansions of the errors. Numerical examples are provided to illustrate the features of the proposed numerical methods.
机译:本文提出了机械正交方法(MQMs)及其外推法,并对其进行了分析,以求解具有闭合光滑边界或闭合分段弯曲边界的斯托克斯方程的第一类边界积分方程。获得由MQM产生的线性系统中的条目是直接且经济高效的。离散矩阵的条件数仅为O(h〜(-1)),并且MQM的精度高于并置和Galerkin方法。 MQM的分析比并置和Galerkin方法更具挑战性,因为它的理论已经不在投影理论的框架之内。在本文中,针对两种边界都证明了MQM解的收敛性和MQM解误差的渐近展开。为了进一步提高精度,基于误差的渐近展开,对平滑边界上的机械正交解构造了Richardson外推法,并针对分段曲线边界上的机械正交解构造了分裂外推法。数值例子说明了所提出数值方法的特点。

著录项

  • 来源
    《Applied numerical mathematics》 |2015年第10期|165-179|共15页
  • 作者单位

    School of Mathematical Science, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731. China;

    Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409. United States;

    School of Mathematical Science, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mechanical quadrature method; Extrapolation; Boundary integral equation; Stokes equation;

    机译:机械正交法;外推;边界积分方程;斯托克斯方程;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号