首页> 外文期刊>Applied numerical mathematics >Pure Lagrangian and semi-Lagrangian finite element methods for the numerical solution of Navier-Stokes equations
【24h】

Pure Lagrangian and semi-Lagrangian finite element methods for the numerical solution of Navier-Stokes equations

机译:Navier-Stokes方程数值解的纯拉格朗日和半拉格朗日有限元方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose a unified formulation to introduce Lagrangian and semi-Lagrangian velocity and displacement methods for solving the Navier-Stokes equations. This formulation allows us to state classical and new numerical methods. Several examples are given. We combine them with finite element methods for spatial discretization. In particular, we propose two new second-order characteristics methods in terms of the displacement, one semi-Lagrangian and the other one pure Lagrangian. The pure Lagrangian displacement methods are useful for solving free surface problems and fluid-structure interaction problems because the computational domain is independent of the time and fluid-solid coupling at the interphase is straightforward. However, for moderate to high-Reynolds number flows, they can lead to high distortion in the mesh elements. When this happens it is necessary to remesh and reinitialize the transformation to the identity. In order to assess the performance of the obtained numerical methods, we solve different problems in two space dimensions. In particular, numerical results for a sloshing problem in a rectangular tank and the flow in a driven cavity are presented.
机译:在本文中,我们提出一个统一的公式来介绍拉格朗日和半拉格朗日速度和位移方法,以解决Navier-Stokes方程。这种表述使我们能够陈述经典和新的数值方法。举几个例子。我们将它们与有限元方法结合起来进行空间离散化。特别是,我们提出了两种新的位移二阶特征方法,一种是半拉格朗日方法,另一种是纯拉格朗日方法。纯的拉格朗日位移法可用于解决自由表面问题和流固耦合问题,因为计算域与时间无关,并且在相间流固耦合很简单。但是,对于中等到高雷诺数的流动,它们会导致网格元素中的高变形。发生这种情况时,有必要重新整理并重新初始化对身份的转换。为了评估所获得数值方法的性能,我们在两个空间维度上解决了不同的问题。特别是,给出了矩形罐中晃荡问题和从动腔中流动的数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号