首页> 外文期刊>Applied numerical mathematics >Superconvergence of discontinuous Galerkin solutions for higher-order ordinary differential equations
【24h】

Superconvergence of discontinuous Galerkin solutions for higher-order ordinary differential equations

机译:高阶常微分方程不连续Galerkin解的超收敛性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the superconvergence properties of the discontinuous Galerkin (DG) method applied to one-dimensional mth-order ordinary differential equations without introducing auxiliary variables. We show that the leading term of the discretization error on each element is proportional to a combination of Jacobi polynomials. Thus, the p-degree DG solution is O(h~(p+2)) superconvergent at the roots of specific combined Jacobi polynomials. Moreover, we use these results to compute simple, efficient and asymptotically exact a posteriori error estimates and to construct higher-order DG approximations.
机译:在本文中,我们研究了在不引入辅助变量的情况下,将不连续Galerkin(DG)方法应用于一维m阶常微分方程的超收敛性质。我们表明,每个元素上离散误差的前导项与Jacobi多项式的组合成比例。因此,p级DG解在特定组合Jacobi多项式的根处是O(h〜(p + 2))超收敛。此外,我们使用这些结果来计算简单,有效且渐近精确的后验误差估计,并构建高阶DG近似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号