首页> 外文期刊>Applied numerical mathematics >Superconvergence of the discontinuous Galerkin method for nonlinear second-order initial-value problems for ordinary differential equations
【24h】

Superconvergence of the discontinuous Galerkin method for nonlinear second-order initial-value problems for ordinary differential equations

机译:常微分方程非线性二阶初值问题的间断Galerkin方法的超收敛性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose and analyze a superconvergent discontinuous Galerkin (DG) method for nonlinear second-order initial-value problems for ordinary differential equations. Optimal a priori error estimates for the solution and for the auxiliary variable that approximates the first-order derivative are derived in the L~2-norm. The order of convergence is proved to be p +1, when piecewise polynomials of degree at most p are used. We further prove that the p-degree DG solutions are Ο(h~(2p+1)) superconvergent at the downwind points. Finally, we prove that the DG solutions are superconvergent with order p + 2 to a particular projection of the exact solutions. The proofs are valid for arbitrary nonuniform regular meshes and for piecewise P~p polynomials with arbitrary p ≥ 1. Computational results indicate that the theoretical orders of convergence and superconvergence are optimal.
机译:在本文中,我们提出并分析了用于常微分方程的非线性二阶初值问题的超收敛不连续伽勒金(DG)方法。在L〜2范数中,得出了解和近似一阶导数的辅助变量的最优先验误差估计。当使用至多为p的分段多项式时,证明收敛的阶数为p +1。我们进一步证明了p级DG解在顺风点为ο(h〜(2p + 1))超收敛。最后,我们证明DG解具有p + 2阶超收敛于精确解的特定投影。该证明对于任意不均匀的正则网格和任意p≥1的分段P〜p多项式都是有效的。计算结果表明,收敛和超收敛的理论阶数是最优的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号