首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A discontinuous Galerkin method for higher-order ordinary differential equations
【24h】

A discontinuous Galerkin method for higher-order ordinary differential equations

机译:高阶常微分方程的间断Galerkin方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new discontinuous finite element method to solve initial value problems for ordinary differential equations and prove that the finite element solution exhibits an optimal O(△t~(p+1) convergence rate in the y~2 norm. We further show that the p-degree discontinuous solution of differential equation of order m and its first m - 1 derivatives are O(△t~(2p+2-m) superconvergent at the end of each step. We also establish that the p-degree discontinuous solution is O(△t~(p+2) superconvergent at the roots of (p + 1 - m)-degree Jacobi polynomial on each step. Finally, we present several computational examples to validate our theory and construct asymptotically correct a posteriori error estimates.
机译:本文提出了一种新的非连续有限元方法来求解常微分方程的初值问题,并证明该有限元解在y〜2范数下具有最优的O(△t〜(p + 1)收敛速度。我们进一步证明,在每步结束时,阶数为m的微分方程及其第一个m-1导数的p度不连续解为O(△t〜(2p + 2-m)超收敛。阶不连续解在每一步上都是(p +1-m)阶Jacobi多项式根的O(△t〜(p + 2)超收敛。最后,我们给出几个计算示例来验证我们的理论并渐近正确后验误差估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号