首页> 外文期刊>Applied numerical mathematics >Analysis of a posteriori error estimates of the discontinuous Galerkin method for nonlinear ordinary differential equations
【24h】

Analysis of a posteriori error estimates of the discontinuous Galerkin method for nonlinear ordinary differential equations

机译:非线性常微分方程间断Galerkin方法的后验误差估计分析

获取原文
获取原文并翻译 | 示例

摘要

We develop and analyze a new residual-based a posteriori error estimator for the discontinuous Galerkin (DG) method for nonlinear ordinary differential equations (ODEs). The a posteriori DG error estimator under investigation is computationally simple, efficient, and asymptotically exact. It is obtained by solving a local residual problem with no boundary condition on each element. We first prove that the DG solution exhibits an optimal O(h~(p+1)) convergence rate in the L~2-norm when p-degree piecewise polynomials with p ≥ 1 are used. We further prove that the DG solution is O(h~(2p+1)) superconvergent at the downwind points. We use these results to prove that the p-degree DG solution is O(h~(p+2)) super close to a particular projection of the exact solution. This superconvergence result allows us to show that the true error can be divided into a significant part and a less significant part. The significant part of the discretization error for the DG solution is proportional to the (p + l)-degree right Radau polynomial and the less significant part converges at O(h~(p+2)) rate in the L~2-norm. Numerical experiments demonstrate that the theoretical rates are optimal. Based on the global superconvergent approximations, we construct asymptotically exact a posteriori error estimates and prove that they converge to the true errors in the L~2-norm under mesh refinement. The order of convergence is proved to be p + 2. Finally, we prove that the global effectivity index in the L~2-norm converges to unity at O(h) rate. Several numerical examples are provided to illustrate the global superconvergence results and the convergence of the proposed estimator under mesh refinement. A local adaptive procedure that makes use of our local a posteriori error estimate is also presented.
机译:我们为非线性常微分方程(ODE)的不连续Galerkin(DG)方法开发并分析了一种新的基于残差的后验误差估计器。研究中的后验DG误差估计器在计算上简单,有效且渐近精确。它是通过解决每个元素上没有边界条件的局部残差问题而获得的。我们首先证明,当使用p≥1的p级分段多项式时,DG解在L〜2-范数中表现出最优的O(h〜(p + 1))收敛速度。我们进一步证明了DG解在顺风点为O(h〜(2p + 1))超收敛。我们使用这些结果来证明p级DG解的O(h〜(p + 2))超接近于精确解的特定投影。这个超收敛结果使我们能够证明,真实误差可以分为重要部分和次要部分。 DG解的离散化误差的重要部分与(p + l)度右Radau多项式成正比,次要部分在L〜2范数中以O(h〜(p + 2))速率收敛。 。数值实验表明理论速率是最优的。基于全局超收敛近似,我们构造渐近精确的后验误差估计,并证明它们在网格细化下收敛于L〜2-范数中的真实误差。证明收敛的阶数为p +2。最后,我们证明L〜2范数中的整体有效性指数在O(h)速率下收敛到1。提供了一些数值示例来说明全局超收敛结果以及在网格细化下所提出的估计量的收敛性。还介绍了利用我们的局部后验误差估计的局部自适应过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号