首页> 外文期刊>Applied numerical mathematics >Error analysis of a compact finite difference method for fourth-order nonlinear elliptic boundary value problems
【24h】

Error analysis of a compact finite difference method for fourth-order nonlinear elliptic boundary value problems

机译:四阶非线性椭圆边值问题的紧致差分法的误差分析

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with a compact finite difference method with non-isotropic mesh sizes for a two-dimensional fourth-order nonlinear elliptic boundary value problem. By the discrete energy analysis, the optimal error estimates in the discrete L~2, H~1 and L~∞ norms are obtained without any constraint on the mesh sizes. The error estimates show that the compact finite difference method converges with the convergence rate of fourth-order. Based on a high-order approximation of the solution, a Richardson extrapolation algorithm is developed to make the final computed solution sixth-order accurate. Numerical results demonstrate the high-order accuracy of the compact finite difference method and its extrapolation algorithm in the discrete L~2, H~1 and L~∞ norms.
机译:本文涉及二维四阶非线性椭圆形边值问题的非等向网格尺寸的紧致有限差分方法。通过离散能量分析,获得了离散L〜2,H〜1和L〜∞范数中的最优误差估计,而对网格大小没有任何约束。误差估计表明,紧致有限差分法收敛于四阶收敛速度。基于解的高阶近似,开发了Richardson外推算法,以使最终计算出的解为六阶精确。数值结果证明了在离散L〜2,H〜1和L〜∞范数中,紧致有限差分法及其外推算法的高阶精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号