首页> 外文期刊>Applied numerical mathematics >Numerical study of an adaptive domain decomposition algorithm based on Chebyshev tau method for solving singular perturbed problems
【24h】

Numerical study of an adaptive domain decomposition algorithm based on Chebyshev tau method for solving singular perturbed problems

机译:Chebyshev tau法求解奇异摄动问题的自适应域分解算法的数值研究

获取原文
获取原文并翻译 | 示例

摘要

It is known that spectral methods offer exponential convergence for infinitely smooth solutions. However, they are not applicable for problems presenting singularities or thin layers, especially true for the ones with the location of singularity unknown. An adaptive domain decomposition method (DDM) integrated with Chebyshev tau method based on the highest derivative (CTMHD) is introduced to solve singular perturbed boundary value problems (SPBVPs). The proposed adaptive algorithm uses the refinement indicators based on Chebyshev coefficients to determine which subintervals need to be refined. Numerical experiments have been conducted to demonstrate the superior performance of the method for SPBVPs with a number of singularities including boundary layers, interior layers and dense oscillations. A fourth order nonlinear SPBVP is also concerned. The numerical results illustrate the efficiency and applicability of our adaptive algorithm to capture the locations of singularities, and the higher accuracy in comparison with some existing numerical methods in the literature.
机译:众所周知,频谱方法为无限平滑的解决方案提供指数收敛。但是,它们不适用于出现奇异点或薄层的问题,特别是对于那些奇异点位置未知的问题。为了解决奇异摄动边值问题(SPBVPs),引入了一种基于最高导数(CTMHD)的Chebyshev tau方法与自适应域分解方法(DDM)集成。所提出的自适应算法使用基于切比雪夫系数的细化指标来确定哪些子区间需要细化。进行了数值实验,以证明该SPBVP的方法具有优越的性能,具有许多奇异之处,包括边界层,内层和致密振荡。还涉及四阶非线性SPBVP。数值结果说明了我们的自适应算法捕获奇异点的效率和适用性,与文献中现有的一些数值方法相比,具有更高的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号