首页> 外文期刊>Applied numerical mathematics >Well-balanced hybrid compact-WENO scheme for shallow water equations
【24h】

Well-balanced hybrid compact-WENO scheme for shallow water equations

机译:浅水方程组的均衡均衡紧致WENO格式

获取原文
获取原文并翻译 | 示例

摘要

We investigate the performance of the high order well-balanced hybrid compact-weighted essentially non-oscillatory (WEN0) finite difference scheme (Hybrid) for simulations of shallow water equations with source terms due to a non-flat bottom topography. The Hybrid scheme employs the nonlinear fifth order characteristic-wise WENO-Z finite difference scheme to capture high gradients and discontinuities in an essentially non-oscillatory manner, and the linear spectral-like sixth order compact finite difference scheme to resolve the fine scale structures in the smooth regions of the solution efficiently and accurately. The high order multi-resolution analysis is employed to identify the smoothness of the solution at each grid point. In this study, classical one- and two-dimensional simulations, including a long time two-dimensional dam-breaking problem with a non-flat bottom topography, are conducted to demonstrate the performance of the hybrid scheme in terms of the exact conservation property (C-property), good resolution and essentially non-oscillatory shock capturing of the smooth and discontinuous solutions respectively, and up to 2-3 times speedup factor over the well-balanced WENO-Z scheme.
机译:我们研究了由于非平坦底部地形而产生的带有源项的浅水方程组的高阶均衡平衡紧凑加权基本非振荡(WEN0)有限差分方案(Hybrid)的性能。混合方案采用非线性五阶特征方式WENO-Z有限差分方案以基本上非振荡的方式捕获高梯度和不连续性,并采用线性频谱状六阶紧致有限差分方案来解析精细结构。有效而准确地解决方案的平滑区域。高阶多分辨率分析用于识别每个网格点处解决方案的平滑度。在这项研究中,进行了经典的一维和二维模拟,包括长时间的二维溃坝问题和非平坦底部地形,以根据精确的保护性质证明混合方案的性能( C属性),良好的分辨率和对平滑和不连续溶液的基本非振荡震荡捕获,并且在均衡的WENO-Z方案中,加速因子高达2-3倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号