首页> 外文期刊>Applied numerical mathematics >The finite difference scheme for nonlinear Schrodinger equations on unbounded domain by artificial boundary conditions
【24h】

The finite difference scheme for nonlinear Schrodinger equations on unbounded domain by artificial boundary conditions

机译:无边界域上非线性Schrodinger方程的有限差分格式的人工边界条件

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose and analyze a finite difference method for the nonlinear Schrödinger equations on unbounded domain by using artificial boundary conditions. Two artificial boundary conditions are introduced to restrict the original Schrödinger equations on an unbounded domain into an initial–boundary value problem with a bounded domain. Then, a finite difference scheme for the reduced problem is proposed. The important feature of the proposed scheme is that an extrapolation operator is introduced to treat the nonlinear term while the scheme keeps unconditionally stable and does not introduce any oscillations at the artificial boundaries. The proposed scheme with the discrete artificial boundary conditions is rigorously analyzed to yield the unconditional stability and the scheme is also proved to be convergent. Numerical examples are given to show the performance of our scheme.
机译:在本文中,我们使用人工边界条件提出并分析了无界域上非线性Schrödinger方程的有限差分方法。引入了两个人工边界条件,以将原始Schrödinger方程在无界域上限制为有界域的初始边界值问题。然后,提出了简化问题的有限差分方案。所提出的方案的重要特征是引入了外推算子来处理非线性项,同时该方案保持了无条件的稳定并且在人工边界上没有引入任何振荡。对提出的具有离散人工边界条件的方案进行了严格分析,以产生无条件的稳定性,并且证明该方案是收敛的。数值例子说明了该方案的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号