首页> 外文期刊>Applied Mathematical Modelling >Predicting stochastic characteristics of generalized eigenvalues via a novel sensitivity-based probability density evolution method
【24h】

Predicting stochastic characteristics of generalized eigenvalues via a novel sensitivity-based probability density evolution method

机译:通过新型敏感性概率密度进化法预测广义特征值的随机特征

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel numerical method for predicting the probability density function of generalized eigenvalues in the mechanical vibration system with consideration of uncertainties in structural parameters. The eigenproblem of structural vibration is presented by first and the sensitivity of generalized eigenvalues with respect to structural parameters can be derived. The probability density evolution method is then developed to capture the probability density function of generalized eigenvalues considering uncertain material properties. Within the proposed method, the probability density evolution equation for the generalized eigenvalue problem is established accounting for the sensitivity of generalized eigenvalues with respect to structural parameters. A new variable which connects generalized eigenvalues to structural parameters is then introduced to simplify the original probability density evolution equation. Next, the simplified probability density evolution equation is solved by using the finite difference method with total variation diminishing schemes. Finally, the probability density function as well as the second-order statistical quantities of generalized eigenvalues can be predicted. Numerical examples demonstrate that the proposed method yields results consistent with Monte-Carlo simulation method within significantly less computation time and the coefficients of variation of uncertain parameters as well as the total number of them have remarkable effects on stochastic characteristics of generalized eigenvalues.
机译:本文提出了一种新的数值方法,以考虑结构参数的不确定性来预测机械振动系统中广义特征值的概率密度函数。通过首先呈现结构振动的特征问题,并且可以推导出相对于结构参数的广义特征值的敏感性。然后开发了概率密度进化方法以捕获考虑不确定材料特性的广义特征值的概率密度函数。在所提出的方法中,建立了广义特征值问题的概率密度进化方程,以占结构参数的广义特征值的敏感性。然后引入将广义特征值连接到结构参数的新变量以简化原始概率密度进化方程。接下来,通过使用具有总变化减少方案的有限差分方法来解决简化的概率密度演化方程。最后,可以预测概率密度函数以及推广的概要特征值的二阶统计量。数值示例表明,该方法产生的结果与Monte-Carlo仿真方法一致的结果一致,在显着较低的计算时间和不确定参数的变化系数以及它们的总数对广义特征值的随机特征具有显着影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号