首页> 外文期刊>Applied Mathematical Modelling >A new sequential space-filling sampling strategy for elementary effects-based screening method
【24h】

A new sequential space-filling sampling strategy for elementary effects-based screening method

机译:基于基于效果的筛选方法的新顺序空间填充采样策略

获取原文
获取原文并翻译 | 示例

摘要

To predict or control the response of a complicated numerical model which involves a large number of input variables but is mainly affected by only a part of variables, it is necessary to screening those active variables. This paper proposes a new space-filling sampling strategy, which is used to screening the parameters based on the Morris' elementary effect method. The beginning points of sampling trajectories are selected by using the maximin principle of Latin Hypercube Sampling method. The remaining points of trajectories are determined by using the one-factor-at-a-time design. Being different from other sampling strategies to determine the sequence of factors randomly in one-factor-at-a-time design, the proposed method formulates the sequence of factors by a deterministic algorithm, which sequentially maximizes the Euclidean distance among sampling trajectories. A new efficient algorithm is proposed to transform the distance maximization problem to a coordinate sorting problem, which saves computational cost much. After the elementary effects are computed using the sampling points, a detailed criterion is presented to select the active factors. Two mathematic examples and an engineering problem are used to validate the proposed sampling method, which demonstrates the priority in computational efficiency, space-filling performance, and screening efficiency.
机译:为了预测或控制涉及大量输入变量的复杂数值模型的响应,但主要受变量的一部分影响,有必要筛选那些活动变量。本文提出了一种新的空间填充采样策略,用于筛选基于Morris的基本效果方法的参数。采样轨迹的开始点是通过使用拉丁超立方体采样方法的最大值原理选择的。通过使用一个时间因素设计来确定轨迹的剩余点。与其他采样策略不同,以确定在一个因素 - 在一次性设计中随机的因素的序列,所提出的方法通过确定性算法制定因子的序列,该确定性算法顺序地最大化采样轨迹之间的欧几里德距离。提出了一种新的高效算法来将距离最大化问题转换为坐标排序问题,从而节省了计算成本。使用采样点计算基本效果之后,提出了一种详细的标准以选择活动因子。两个数学例子和工程问题用于验证所提出的采样方法,该方法展示了计算效率,空间填充性能和筛选效率的优先级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号