首页> 外文期刊>Applied Mathematical Modelling >Application of the transfer matrix approximation for wave propagation in a metafluid representing an acoustic black hole duct termination
【24h】

Application of the transfer matrix approximation for wave propagation in a metafluid representing an acoustic black hole duct termination

机译:转移矩阵近似在梅流体中的波传播中的应用,代表声黑洞管道终端

获取原文
获取原文并翻译 | 示例

摘要

The transfer matrix method has been proposed to analyze the acoustic black hole effect in duct terminations. The latter is achieved by placing a retarding waveguide structure inside the duct, which consists in a set of rings whose inner radii decrease to zero following a power law. The rings are separated by thin air cavities. If the number of ring-cavity ensembles is large enough, wave propagation inside the waveguide can be treated as a continuous problem. A governing differential equation can be derived for the acoustic black hole which intrinsically relies on assumptions from transfer matrix theory. However, no formal demonstration exists showing that the transfer matrix solution is consistent and formally tends to the solution of the continuous problem. Proving such consistency is the main goal of the paper and an original option has been adopted to this purpose. First, we prove the differential equation for the acoustic black hole is identical to the wave equation for a metafluid with a power-law varying density. Transfer matrices are then applied to solve wave propagation in a discretization of the metafluid into layers of constant density. It is shown that when the number of layers tends to infinity and their thicknesses to zero, the transfer matrix solution satisfies the metafluid equation and therefore the acoustic black hole one. The transfer matrices for the metafluid discrete layers take a particularly simple form, which is a great advantage. This work allows one to interpret the retarding waveguide structure as a particular realization of the metafluid.
机译:已经提出了转移矩阵方法来分析管道终端中的声学黑洞效应。后者是通过将延迟波导结构放置在管道内部,该结构包括在电力法之后的内半径减小到零的一组环。环通过薄的空腔分开。如果环形腔合奏的数量足够大,则波导内的波传播可以被视为连续问题。可以为声学黑洞导出控制微分方程,其本质上依赖于传输矩阵理论的假设。然而,不存在正式的示范表明转移矩阵溶液是一致的并且正式倾向于持续问题的溶液。证明这种一致性是本文的主要目标,并通过此目的采用了原始选项。首先,我们证明了声黑洞的微分方程与具有电力法变化密度的梅流体的波浪方程相同。然后施加转移矩阵以在离散化物中求解波传播成恒定密度的层。结果表明,当层数倾向于无穷大并且它们的厚度为零时,转移矩阵溶液满足MetaF流体方程,因此是声学黑洞。 Metafluid离散层的转移矩阵采用特别简单的形式,这是一个很大的优势。这项工作允许人们将延迟波导结构解释为细胞的特定实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号