首页> 外文期刊>Applied Mathematical Modelling >A NURBS-based Multi-Material Interpolation (N-MMI) for isogeometric topology optimization of structures
【24h】

A NURBS-based Multi-Material Interpolation (N-MMI) for isogeometric topology optimization of structures

机译:基于NURBS的多材料插值(N-MMI)用于结构的等几何拓扑优化

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the main intention is to propose a new Multi-material Isogeometric Topology Optimization (M-ITO) method for the optimization of multiple materials distribution, where an improved Multi-Material Interpolation model is developed using Non-Uniform Rational B-splines (NURBS), namely the "NURBS-based Multi-Material Interpolation (N-MM1)". In the N-MMI model, three key components are involved: (1) multiple Fields of Design Variables (DVFs): NURBS basis functions with control design variables are applied to construct DVFs with the sufficient smoothness and continuity; (2) multiple Fields of Topology Variables (TVFs): each TVF is expressed by a combination of all DVFs to present the layout of a distinct material in the design domain; (3) Multi-material interpolation: the material property at each point is equal to the summation of all TVFs interpolated with constitutive elastic properties. DVFs and TVFs are in the decoupled expression and optimized in a serial evolving mechanism. This feature can ensure the constraint functions are separate and linear with respect to TVFs, which can be beneficial to lower the complexity of numerical computations and eliminate numerical troubles in the multi-material optimization. Two kinds of multi-material topology optimization problems are discussed, i.e., one with multiple volume constraints and the other with the total mass constraint. Finally, several numerical examples in 2D and 3D are provided to demonstrate the effectiveness of the M-ITO method.
机译:本文的主要目的是提出一种新的多材料等几何拓扑优化(M-ITO)方法,以优化多材料分布,其中使用非均匀有理B样条曲线开发了一种改进的多材料插值模型(NURBS),即“基于NURBS的多材料插值(N-MM1)”。在N-MMI模型中,涉及三个关键组件:(1)设计变量(DVF)的多个字段:具有控制设计变量的NURBS基本函数用于构造具有足够平滑性和连续性的DVF; (2)多个拓扑变量字段(TVF):每个TVF由所有DVF的组合表示,以在设计域中呈现不同材料的布局; (3)多材料插值:每个点的材料属性等于所有具有本构弹性属性的TVF的总和。 DVF和TVF处于解耦形式,并以串行演进机制进行了优化。此功能可以确保约束函数相对于TVF而言是独立且线性的,这有助于降低数值计算的复杂性并消除多材料优化中的数值麻烦。讨论了两种多材料拓扑优化问题,即一种具有多个体积约束,另一种具有总质量约束。最后,在2D和3D中提供了几个数值示例,以证明M-ITO方法的有效性。

著录项

  • 来源
    《Applied Mathematical Modelling》 |2020年第5期|818-843|共26页
  • 作者单位

    The State Key Lab of Digital Manufacturing Equipment and Technology Huazhong University of Science and Technology 1037 Luoyu Road Wuhan Hubei 430074 China The School of Mechanical and Mechatronic Engineering University of Technology Sydney 15 Broadway Ultimo NSW 2007 Australia;

    The School of Mechanical and Mechatronic Engineering University of Technology Sydney 15 Broadway Ultimo NSW 2007 Australia;

    The State Key Lab of Digital Manufacturing Equipment and Technology Huazhong University of Science and Technology 1037 Luoyu Road Wuhan Hubei 430074 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Topology optimization; Multi-material; Isogeometric analysis; NURBS;

    机译:拓扑优化;多种材料;等几何分析;纽伯斯;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号