首页> 外文期刊>Applied Mathematical Modelling >Finite difference/Hermite-Galerkin spectral method for multi-dimensional time-fractional nonlinear reaction-diffusion equation in unbounded domains
【24h】

Finite difference/Hermite-Galerkin spectral method for multi-dimensional time-fractional nonlinear reaction-diffusion equation in unbounded domains

机译:无界域中多维时分非线性反应扩散方程的有限差分/ Hermite-Galerkin谱方法

获取原文
获取原文并翻译 | 示例

摘要

The aim of this paper is to develop an efficient finite difference/Hermite-Galerkin spectral method for the time-fractional nonlinear reaction-diffusion equation in unbounded domains with one, two, and three spatial dimensions. For this purpose, we employ the L2 - 1(sigma) formula to discretize the temporal Caputo derivative. Additionally, we apply the Hermite-Galerkin spectral method with scaling factor for the approximation in space. The stability of the fully discrete scheme is established to show that our method is unconditionally stable. Numerical experiments including one-, two-, and three-dimensional cases of the problem are carried out to verify the accuracy of our scheme. The scheme is showcased by solving two problems of practical interest, including the fractional Allen-Cahn and Gray-Scott models, together with an analysis of the properties of the fractional orders. (C) 2019 Elsevier Inc. All rights reserved.
机译:本文的目的是为具有一,二和三个空间维度的无界域中的时间分数阶非线性反应扩散方程开发一种有效的有限差分/ Hermite-Galerkin谱方法。为此,我们采用L2-1(sigma)公式离散时间Caputo导数。此外,我们将Hermite-Galerkin光谱方法与比例因子一起应用到空间近似中。建立了完全离散方案的稳定性以表明我们的方法是无条件稳定的。进行了包含一维,二维和三维问题的数值实验,以验证我们的方案的准确性。通过解决两个实际感兴趣的问题(包括分数Allen-Cahn和Gray-Scott模型)以及分数阶性质的分析,展示了该方案。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号