首页> 外文期刊>Applied Mathematical Modelling >ReviewModus: Text classification and sentiment prediction of unstructured reviews using a hybrid combination of machine learning and evaluation models
【24h】

ReviewModus: Text classification and sentiment prediction of unstructured reviews using a hybrid combination of machine learning and evaluation models

机译:ReviewModus:使用机器学习和评估模型的混合组合对非结构化评论进行文本分类和情感预测

获取原文
获取原文并翻译 | 示例

摘要

While research interest on product and service evaluation from unstructured text reviews is increasing, investigating the effectiveness of predictive analytical models in this context is still under-explored. With the advancement in machine learning research, an opportunity exists to bridge this gap using a model-based product and service evaluation. We propose in this article ReviewModus, a text mining and processing framework that (1) relies on the model structure and its corresponding assessment questions to train a machine learning algorithm to predict the classification of reviews around the model dimensions; (2) predicts the sentiments within the reviews based on external review training datasets; and (3) transforms the extracted measures from the reviews for further analysis. Our approach is evaluated in the context of 11 e-government services where the performance of the framework is compared to the manual processing of unstructured reviews crosschecked by three independent evaluators. Our study shows promising classification results with a micro-average F-score reaching 85.16%, and a high sentiment prediction correlation (71.44%) with the manually performed sentiment assessment. (C) 2019 Elsevier Inc. All rights reserved.
机译:尽管对来自非结构化文本审阅的产品和服务评估的研究兴趣正在增长,但是在这种情况下研究预测性分析模型的有效性的探索仍很不足。随着机器学习研究的发展,存在使用基于模型的产品和服务评估来弥合这种差距的机会。我们在本文中提出一个文本挖掘和处理框架ReviewModus,该框架(1)依靠模型结构及其相应的评估问题来训练机器学习算法,以预测围绕模型维度的评论分类; (2)根据外部评论训练数据集预测评论中的情绪; (3)转换从评论中提取的度量以进行进一步分析。我们的方法是在11个电子政务服务的上下文中进行评估的,其中将框架的性能与由三名独立评估者进行交叉检查的非结构化审核的手动处理进行了比较。我们的研究表明,分类结果令人鼓舞,微观平均F分数达到85.16%,并且与人工执行的情绪评估具有较高的情绪预测相关性(71.44%)。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号