首页> 美国卫生研究院文献>Materials >Hybrid Modelling by Machine Learning Corrections of Analytical Model Predictions towards High-Fidelity Simulation Solutions
【2h】

Hybrid Modelling by Machine Learning Corrections of Analytical Model Predictions towards High-Fidelity Simulation Solutions

机译:通过机器学习校正对高保真仿真解决方案的分析模型预测的混合模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Within the fields of materials mechanics, the consideration of physical laws in machine learning predictions besides the use of data can enable low prediction errors and robustness as opposed to predictions only based on data. On the one hand, exclusive utilization of fundamental physical relationships might show significant deviations in their predictions compared to reality, due to simplifications and assumptions. On the other hand, using only data and neglecting well-established physical laws can create the need for unreasonably large data sets that are required to exhibit low bias and are usually expensive to collect. However, fundamental but simplified physics in combination with a corrective model that compensates for possible deviations, e.g., to experimental data, can lead to physics-based predictions with low prediction errors, also despite scarce data. In this article, it is demonstrated that a hybrid model approach consisting of a physics-based model that is corrected via an artificial neural network represents an efficient prediction tool as opposed to a purely data-driven model. In particular, a semi-analytical model serves as an efficient low-fidelity model with noticeable prediction errors outside its calibration domain. An artificial neural network is used to correct the semi-analytical solution towards a desired reference solution provided by high-fidelity finite element simulations, while the efficiency of the semi-analytical model is maintained and the applicability range enhanced. We utilize residual stresses that are induced by laser shock peening as a use-case example. In addition, it is shown that non-unique relationships between model inputs and outputs lead to high prediction errors and the identification of salient input features via dimensionality analysis is highly beneficial to achieve low prediction errors. In a generalization task, predictions are also outside the process parameter space of the training region while remaining in the trained range of corrections. The corrective model predictions show substantially smaller errors than purely data-driven model predictions, which illustrates one of the benefits of the hybrid modelling approach. Ultimately, when the amount of samples in the data set is reduced, the generalization of the physics-related corrective model outperforms the purely data-driven model, which also demonstrates efficient applicability of the proposed hybrid modelling approach to problems where data is scarce.
机译:在材料力学领域内,除了使用数据之外,考虑机器学习预测中的物理法律可以实现低预测误差和鲁棒性,而不是基于数据的预测。一方面,由于简化和假设,与现实相比,基本物理关系的独家利用可能表现出显着的预测中的偏差。另一方面,仅使用数据和忽略良好的物理定律可以创造需要出现低偏压所需的不合理大数据集并且通常收集昂贵。然而,基本但简化的物理学与补偿可能偏差的纠正模型,例如对实验数据,可以导致基于物理的预测,并且尽管数据稀缺。在本文中,证明由经由人工神经网络校正的基于物理的模型组成的混合模型方法代表了与纯数据驱动模型相对的有效预测工具。特别地,半分析模型用作高效的低保真模型,其校准域外的明显预测误差。人工神经网络用于校正由高保真有限元模拟提供的所需参考解决方案的半分析解决方案,同时维持半分析模型的效率,适用性范围增强。我们利用通过激光冲击诱导的残余应力作为用例例。另外,示出了模型输入和输出之间的非独特关系导致高预测误差,并且通过维度分析识别突出输入特征是实现低预测误差的高度有益。在泛化任务中,预测也在训练区域的过程参数空间之外,同时留在训练的校正范围内。校正模型预测显示比纯粹数据驱动的模型预测的误差显着较小,其示出了混合建模方法的一个好处。最终,当数据集中的样本量减少时,物理学相关校正模型的泛化优于纯粹的数据驱动模型,这也证明了所提出的混合建模方法对数据稀缺的问题的有效适用性。

著录项

  • 期刊名称 Materials
  • 作者单位
  • 年(卷),期 2021(14),8
  • 年度 2021
  • 页码 1883
  • 总页数 19
  • 原文格式 PDF
  • 正文语种
  • 中图分类 外科学;
  • 关键词

    机译:机器学习;分析模型;有限元模型;人工神经网络;模型校正;特征工程;基于物理学;数据驱动;激光冲击喷丸;残余的应力;

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号