首页> 外文期刊>Applied Mathematical Modelling >An unstructured mesh finite element method for solving the multi-term time fractional and Riesz space distributed-order wave equation on an irregular convex domain
【24h】

An unstructured mesh finite element method for solving the multi-term time fractional and Riesz space distributed-order wave equation on an irregular convex domain

机译:求解不规则凸域上的多项式时间分数和Riesz空间分布波方程的非结构网格有限元方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the numerical analysis for a multi-term time fracstional and Riesz space distributed-order wave equation is discussed on an irregular convex domain. Firstly, the equation is transformed into a multi-term time-space fractional wave equation using the mid-point quadrature rule to approximate the distributed-order Riesz space derivative. Next, the equation is solved by discretising in time using a Crank-Nicolson scheme and in space using the finite element method (FEM) with an unstructured mesh, respectively. Furthermore, stability and convergence are investigated by introducing some important lemmas on irregular convex domain. Finally, some examples are provided to show the effectiveness and correctness of the proposed numerical method. (C) 2019 Elsevier Inc. All rights reserved.
机译:本文在不规则凸域上讨论了一个多时分形和Riesz空间分布波方程的数值分析。首先,利用中点正交法则将方程转化为一个多项时空分数波方程,以近似分布式Riesz空间导数。接下来,分别通过使用Crank-Nicolson方案在时间上离散和在空间上使用具有非结构化网格的有限元方法(FEM)离散化方程。此外,通过在不规则凸域上引入一些重要引理来研究稳定性和收敛性。最后,提供了一些例子来说明所提出的数值方法的有效性和正确性。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号