首页> 外文期刊>Applied Mathematical Modelling >Free vibration analysis of discrete-continuous functionally graded circular plate via the Neumann series method
【24h】

Free vibration analysis of discrete-continuous functionally graded circular plate via the Neumann series method

机译:离散连续函数梯度圆板的Neumann级数自由振动分析

获取原文
获取原文并翻译 | 示例

摘要

The Neumann series method has been used for the first time to solve the boundary value problem of free axisymmetric and nonaxisymmetric vibrations of continuous and discrete-continuous functionally graded circular plate on the basis of the classical plate theory. The equation of motion and the general solution for a functionally graded circular plate with a very complex system of a discrete elements attached, such as concentric ring masses, elastic supports, rotational springs, and damping elements are presented for the first time. The particular continuous solutions to the defined differential equations are obtained as the Neumann power series rapidly, absolutely, and uniformly convergent to the exact eigenfrequencies for any physically justified values of the plate's parameters on the basis of the properties of the obtained closed-form kernels of the Volterra integral equations. The multiparametric nonlinear characteristic equations for plate with classical and nonclassical boundary conditions are defined and numerically solved to obtain the full spectrum of eigenfrequencies in a simple way. The effects of the position and stiffness of ring supports and of singularities as the radii of supports shrink to the center of the plate on the dimensionless eigenfrequencies of homogeneous and functionally graded circular plate with sliding support and elastic constraints are comprehensively studied and presented for the first time. The accuracy of the proposed low-computational-cost method is demonstrated by comparison of the numerical results with those available in the literature. (C) 2019 Elsevier Inc. All rights reserved.
机译:在经典板理论的基础上,首次使用Neumann级数法来求解连续和离散连续连续功能梯度圆板的自由轴对称和非轴对称振动的边值问题。首次提出了功能梯度圆板的运动方程式和一般解决方案,该圆板具有非常复杂的离散元件系统,例如同心环质量,弹性支撑,旋转弹簧和阻尼元件。对于所定义的微分方程的特定连续解可以作为Neumann幂级数快速,绝对且均匀地收敛到板参数的任何物理上合理值的精确本征频率,这取决于获得的闭合形式核的性质。 Volterra积分方程。定义了具有经典和非经典边界条件的板的多参数非线性特征方程,并对其进行了数值求解,从而以一种简单的方式获得本征频谱的全谱。全面研究了环形支撑件的位置和刚度以及奇异性随着支撑件半径收缩到板中心对具有滑动支撑和弹性约束的均质且功能梯度圆板的无量纲特征频率的影响,并首次提出时间。通过将数值结果与文献中的结果进行比较,证明了所提出的低计算成本方法的准确性。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号