首页> 外文期刊>Applied Mathematical Modelling >A regularization parameter selection model for total variation based image noise removal
【24h】

A regularization parameter selection model for total variation based image noise removal

机译:用于基于总变化量的图像噪声去除的正则化参数选择模型

获取原文
获取原文并翻译 | 示例

摘要

Total variation regularized model is a powerful tool in image noise removal due to its edge-preserving property of an image. One important procedure in the model is to determine the regularization parameter which has an important role in balancing the data-fidelity and the regularity of the denoised image. Discrepancy principle is a classical method for selecting the regularization parameter, which provides an upper bound for the value of the data-fitting term. For the regularization parameter, it is easier to estimate its upper bound as the statistical property of the noise is known. The contribution of this paper is twofold. First, we propose an iterative algorithm to estimate an optimal upper bound by applying the consistency between the value of data-fitting term and the upper bound. Second, we develop a dual-based method to solve the constrained problem which can avoid the computation of the Lagrangian multiplier associated with the constraint. The new algorithm can simultaneously solve the solution of the constrained problem and the estimate of the regularization parameter. Numerical results are given to show that the proposed algorithm is better than some state-of-the-art methods in both efficiency and accuracy. (C) 2018 Elsevier Inc. All rights reserved.
机译:总变化正则化模型由于其图像的边缘保留特性,因此是消除图像噪声的强大工具。该模型中的一个重要过程是确定正则化参数,该参数在平衡数据保真度和去噪图像的正则性方面具有重要作用。差异原理是一种选择正则化参数的经典方法,它为数据拟合项的值提供了上限。对于正则化参数,由于已知噪声的统计属性,因此更容易估计其上限。本文的贡献是双重的。首先,我们提出一种迭代算法,通过应用数据拟合项的值和上限之间的一致性来估计最佳上限。其次,我们开发了一种基于对偶的方法来解决受约束的问题,该问题可以避免计算与约束关联的拉格朗日乘数。新算法可以同时解决约束问题的求解和正则化参数的估计。数值结果表明,该算法在效率和准确性上均优于某些最新技术。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号