首页> 外文期刊>Applied Mathematical Modelling >A trust-region method applied to parameter identification of a simple prey-predator model
【24h】

A trust-region method applied to parameter identification of a simple prey-predator model

机译:一种应用于简单捕食者模型参数辨识的信赖域方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the calibration of the non linear Lotka-Volterra model is used to compare the robustness and efficiency (CPU time) of different optimisation algorithms. Five versions of a quasi-Newton trust-region algorithm are developed and compared with a widely used quasi-Newton method. The trust-region algorithms is more robust and three of them are numerically cheaper than the more usual line search approach. Computation of the first derivatives of the objective function is cheaper with the backward differentiation (or adjoint model) technique than with the forward method as soon as the number of parameter is greater than a few ones. In the optimisation problem, the additional information about the Jacobian matrix made available by the forward method reduces the number of iterations but does not compensate for the increased numerical costs. A quasi-Newton trust-region algorithm with backward differentiation and BFGS update after both successful and unsuccessful iterations represents a robust and efficient algorithm that can be used to calibrate very demanding dynamic models.
机译:在本文中,非线性Lotka-Volterra模型的校准用于比较不同优化算法的鲁棒性和效率(CPU时间)。开发了五个版本的拟牛顿信任区算法,并将其与广泛使用的拟牛顿方法进行比较。信任区域算法更加健壮,并且其中三个算法在数值上比更常用的线搜索方法便宜。一旦参数数量大于几个,使用后向微分(或伴随模型)技术比使用前向方法便宜地计算目标函数的一阶导数。在优化问题中,通过前向方法可获得的有关Jacobian矩阵的附加信息会减少迭代次数,但无法补偿增加的数值成本。在成功和失败的迭代之后,具有后向差异和BFGS更新的准牛顿信任区算法代表了一种强大而有效的算法,可用于校准非常苛刻的动态模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号