首页> 外文期刊>Applied Mathematical Modelling >The foundation of the grey matrix and the grey input-output analysis
【24h】

The foundation of the grey matrix and the grey input-output analysis

机译:灰色矩阵的基础和灰色投入产出分析

获取原文
获取原文并翻译 | 示例

摘要

The grey systems theory aims at the objects that their information is inadequate and this situation is general in reality. It has been urgent work to study the uncertain problems using the missing information. With the help of the simple introduction of grey systems theory, we further study the covered operation and get some calculation rules about grey number. The definition of grey matrix (GM) and its covered operation are proposed. Particularly, some results of the inverse grey matrix are obtained. Also with the help of the proposed grey matrix theory and the traditional input-output analysis, we propose the grey input-output analysis. The most important results are the computational formulas and their rigorous proofs of the matrix-covered set of the inverse grey Leontief coefficient's matrix. It provides an effective tool to study an economic system by the input-output analysis under the uncertain situation. The modified case verifies the effectiveness of our methodology.
机译:灰色系统理论的目标是其信息不足,并且这种情况在现实中是普遍的。利用缺失的信息来研究不确定的问题已经成为当务之急。在简单介绍灰色系统理论的帮助下,我们进一步研究了覆盖操作并获得了一些有关灰色数的计算规则。提出了灰度矩阵(GM)的定义及其覆盖的操作。特别地,获得了逆灰度矩阵的一些结果。在提出的灰矩阵理论和传统的投入产出分析的帮助下,我们提出了灰色投入产出分析。最重要的结果是逆灰色Leontief系数矩阵的矩阵覆盖集的计算公式及其严格的证明。通过不确定条件下的投入产出分析,为研究经济系统提供了有效的工具。修改后的案例验证了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号