首页> 外文期刊>Applied Mathematical Modelling >Optimal boundary control of dynamics responses of piezo actuating micro-beams
【24h】

Optimal boundary control of dynamics responses of piezo actuating micro-beams

机译:压电驱动微梁动力学响应的最优边界控制

获取原文
获取原文并翻译 | 示例

摘要

Optimal control theory is formulated and applied to damp out the vibrations of micro-beams where the control action is implemented using piezoceramic actuators. The use of piezoceramic actuators such as PZT in vibration control is preferable because of their large bandwidth, their mechanical simplicity and their mechanical power to produce controlling forces. The objective function is specified as a weighted quadratic functional of the dynamic responses of the micro-beam which is to be minimized at a specified terminal time using continuous piezoelectric actuators. The expenditure of the control forces is included in the objective function as a penalty term. The optimal control law for the micro-beam is derived using a maximum principle developed by Sloss et al. [J.M. Sloss, J.C. Bruch Jr., I.S. Sadek, S. Adali, Maximum principle for optimal boundary control of vibrating structures with applications to beams, Dynamics and Control: An International Journal 8 (1998) 355-375; J.M. Sloss, l.S. Sadek, J.C. Bruch Jr., S. Adali, Optimal control of structural dynamic systems in one space dimension using a maximum principle, Journal of Vibration and Control 11 (2005) 245-261] for one-dimensional structures where the control functions appear in the boundary conditions in the form of moments. The derived maximum principle involves a Hamiltonian expressed in terms of an adjoint variable as well as admissible control functions. The state and adjoint variables are linked by terminal conditions leading to a boundary-initial-terminal value problem. The explicit solution of the problem is developed for the micro-beam using eigenfunction expansions of the state and adjoint variables. The numerical results are given to assess the effectiveness and the capabilities of piezo actuation by means of moments to damp out the vibration of the micro-beam with a minimum level of voltage applied on the piezo actuators.
机译:制定了最佳控制理论,并将其应用于阻尼微束的振动,在微束中,使用压电陶瓷致动器执行控制动作。压电陶瓷致动器(例如PZT)在振动控制中的使用是优选的,因为它们的带宽大,机械简单并且具有产生控制力的机械能力。目标函数被指定为微束动态响应的加权二次函数,使用连续的压电致动器在指定的终端时间将其最小化。控制力的支出作为惩罚项包含在目标函数中。使用Sloss等人开发的最大原理得出微束的最佳控制律。 [J.M. Sloss,J.C. Bruch Jr.,I.S. Sadek,S.Adali,振动结构的最佳边界控制的最大原理及其在梁上的应用,动力学和控制:国际杂志8(1998)355-375;和美国专利No.8,455,375。 J.M. Sloss,l.S. Sadek,JC Bruch Jr.,S.Adali,使用最大原理在一维空间中对结构动力学系统的最佳控制,振动和控制学报11(2005)245-261]对于一维结构的控制功能出现在边界条件的形式为矩。导出的最大原理涉及用伴随变量和允许的控制函数表示的哈密顿量。状态和伴随变量通过终止条件链接,从而导致边界-初始-终止值问题。使用状态和伴随变量的本征函数展开为微束开发了该问题的显式解决方案。给出了数值结果,以通过在压电致动器上施加最小电压电平的情况下,通过阻尼微梁振动的力矩来评估压电致动的有效性和能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号