首页> 外文期刊>Applied Mathematical Modelling >Transient modeling of non-isothermal, dispersed two-phase flow in natural gas pipelines
【24h】

Transient modeling of non-isothermal, dispersed two-phase flow in natural gas pipelines

机译:天然气管道中非等温,分散两相流的瞬态建模

获取原文
获取原文并翻译 | 示例

摘要

Unsteady-state or transient two-phase flow, caused by any change in rates, pressures or temperature at any location in a two-phase flow line, may last from a few seconds to several hours. In general, these changes are an order of magnitude longer than the transient encountered during single-phase flow. The primary reason for this phenomenon is that the velocity of wave propagation in a two-phase mixture is significantly slower. Interfacial transfer of mass, momentum and energy further complicate the problem. It is primarily due to the numerical difficulties anticipated in accurately modeling transient two-phase flow that the state of the art in this important area is restricted to a handful of studies with direct applicability to petroleum and gas engineering. A limited amount of information on the subject of two-phase transport phenomena is available in the petroleum engineering literature. Most of the publications for two-phase flow of gas assume that temperature is constant over the entire length of the pipeline.rnThis study is the first effort to simulate the non-isothermal, one-dimensional, transient homogenous two-phase flow gas pipeline system using two-fluid conservation equations. The modified Peng-Robinson equation of state is used to calculate the vapor-liquid equilibrium in multi-component natural gas to find the vapor and liquid compressibility factors. Mass transfer between the gas and the liquid phases is treated rigorously through flash calculation, making the algorithm capable of handling retrograde condensation. The liquid droplets are assumed to be spheres of uniform size, evenly dispersed throughout the gas phase.rnThe method of solution is the fully implicit finite difference method. This method is stable for gas pipeline simulations when using a large time step and therefore minimizes the computation time. The algorithm used to solve the non-linear finite difference thermo-fluid equations for two-phase flow through a pipe is based on the Newton-Raphson method.rnThe results show that the liquid condensate holdup is a strong function of temperature, pressure, mass flow rate, and mixture composition. Also, the fully implicit method has advantages, such as the guaranteed stability for large time step, which is very useful for simulating long-term transients in natural gas pipeline systems.
机译:两相流线中任何位置的速率,压力或温度的任何变化引起的非稳态或瞬态两相流可能会持续几秒钟到几小时。通常,这些变化比单相流动期间遇到的瞬变长一个数量级。造成这种现象的主要原因是两相混合物中的波传播速度明显变慢。质量,动量和能量的界面传递使问题进一步复杂化。主要是由于在精确建模瞬态两相流中预期存在数值上的困难,因此在这一重要领域中的最新技术仅限于少数直接可用于石油和天然气工程的研究。在石油工程文献中,关于两相输运现象的信息有限。大多数关于两相气体流的出版物都假定在整个管道长度上温度是恒定的。这项研究是首次模拟非等温,一维瞬态均质两相流气体管道系统。使用二流体守恒方程。修改后的Peng-Robinson状态方程用于计算多组分天然气中的气液平衡,从而找到气液可压缩性因子。气相和液相之间的传质通过闪蒸计算得​​到严格处理,从而使该算法能够处理逆行凝结。假定液滴是均匀大小的球体,均匀分布在整个气相中。解决方法是完全隐式有限差分法。当使用较大的时间步长时,此方法对于天然气管道模拟是稳定的,因此可以最大程度地减少计算时间。用于求解两相流过管道的非线性有限差分热流体方程的算法是基于牛顿-拉夫森法的。结果表明,液体冷凝物的固持力是温度,压力,质量的强函数。流速和混合物组成。而且,完全隐式方法具有很多优点,例如,可以保证大时间步长的稳定性,这对于模拟天然气管道系统中的长期瞬变非常有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号