首页> 外文OA文献 >Modelling and Measuring Transient Flow in Natural Gas Pipelines: Effect of Ambient Heat Transfer Models
【2h】

Modelling and Measuring Transient Flow in Natural Gas Pipelines: Effect of Ambient Heat Transfer Models

机译:天然气管道瞬态流动的建模和测量:环境传热模型的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The central question of this thesis is how and to what extent the representation ofudambient heat transfer in the calculation models contributes to observed deviationsudbetween modelled and measured flow parameters in natural gas transmission. The focusudis on the heat transfer occurring with buried pipelines. The research approach was audcombination of model studies with a large experimental component.udThe first 12 km of an export gas pipeline was instrumented and used for theudexperimental investigation of heat transfer behaviour and result verification. Thisudpipeline section contains both onshore and offshore sections. A high accuracy modeludwas made. Real data of the gas flow instrumentation present on the pipeline define theudfluid conditions at the model boundaries. At an onshore location, the pipeline andudsurrounding soil was instrumented. Measurements included pipe wall and soiludtemperatures, soil humidity and meteorological quantities.udA one-dimensional flow model was used to model the gas flow inside the pipe. Thisudmodel is coupled to three different external heat transfer models of the ambient domainud(pipe wall layers and soil) for comparison. These heat transfer models are 1D steadyudstate, 1D radial unsteady and 2D unsteady description of pipe wall layer and soil. Bothudconduction and convection heat transfer in the soil layers were investigated. The effectudof transient boundary conditions on heat transfer rates and flow parameter calculationsudwere quantified. The developed models were used to analyse and understand theudexperimental data, to study the effect of different external heat transfer models, theudrelevant importance of different heat transfer modes, and the boundary conditionudassumptions on the pipe flow calculations.udThe thesis addresses the following research objectives:ud- The spatial and temporal formulation of the heat transfer problem: how does theudchoice of external heat transfer model influence the calculation accuracy of theudflow parameters during transient flow? To what degree do the different modelsudcapture the physics around the pipelineud- Sensitivities for governing parameters: how do key governing ambientudparameters like air/seawater temperature, and the thermal properties of the soiludaffect the calculation accuracy of the flow parameters?ud- The effect of ground water convection and ambient boundary conditions onudcalculating the flow parametersudThe model verification, carried out over an extended period, and the sensitivity studiesudshow that including the heat storage term in the ambient model has the biggest impactudon the accuracy of the calculated gas temperatures. The accuracy of gas pressures isudmuch less sensitive for the choice of heat transfer model. A large improvement in theudcalculation accuracy of gas temperatures is obtained when using an unsteady heatudconduction model representing the pipe and soil in radial coordinates. This confirmudfindings from earlier published work that using such a so called 1D radial unsteady model of the pipe wall and soil, i.e. including the time dependent heat storage term inudthe governing heat conduction equation, leads to a major improvement of theudcalculation of gas temperatures during transient flow. This model was compared to theud2D unsteady model, based on coupling a FLUENT model to the flow model. The heatudtransfer response obtained with the 1D radial unsteady model was found very similar toudthe geometrically more accurate 2D unsteady model during transient flow conditions.udThe 1D radial unsteady model does lead to a gas temperature error in response to theudannual periodic ambient temperature. This error was found to be small for a typicaludexport gas pipeline, but can be significant for other configurations. The error introducedudby the definition of the ambient soil surface boundary condition was also found to beudsmall compared to the choice of heat transfer model.udThe results show that the gas temperature is sensitive to the values of soil thermaludconductivity, inner film coefficient and seawater temperature during transient flow. Theudsoil surface boundary conditions have a smaller influence. The sensitivity for theudgoverning parameters of the heat transfer model is strongly dependent on the flowudconditions; the resulting deviations in gas temperature are larger during transient flowudconditions resulting in large gas temperature fluctuations.udThe results also show that the effect of natural convection upon the heat transfer is smalludfor the studied case but that at higher intrinsic permeability of the soil, the role ofudnatural convection will play a significant role. The role of forced convection was foundudto have a negligible effect.udSoil thermal properties were determined using different methods. The resulting valuesudfor thermal conductivity and thermal diffusivity are in agreement with each other toudwithin the measurement accuracy. The measurements in the soil surrounding the pipeudshow that the thermal properties are mostly constant in time. Some temporal variationsudwere found, but these were not found to make a significant difference on the resultingudcalculated heat transfer rates and gas temperatures. The experimental results show thatudthe temporal development of soil temperature profiles around the pipe is asymmetricaludwhen comparing the left and right direction. The soil temperatures under the pipe closeudto the pipe wall were found to be lower than those above the pipe wall, which isudopposite of the expectation with a heat conduction model. Both the use of forced andudnatural convection heat transfer in the model could not explain this difference, but theudasymmetry was found not to affect the heat transfer rates significantly within theudaccuracy of the measurements and calculations.udComparison to experimental results during a longer time period, showed that using a 1Dudradial unsteady model leads to good overall agreement in gas temperature, pressure andudpipe wall heat transfer. However, incidental, significant, gas temperature and pressureuddeviations still occur in connection with transient flow conditions. A 1D radial unsteadyudheat conduction model with constant thermal properties, using air temperature as soiludsurface boundary condition, will for most practical purposes satisfactorily approximateudthe more complex physics of the heat and mass transfer in the soil in response to the gasudtemperature fluctuations and the ambient parameters.
机译:本文的中心问题是,在计算模型中,环境传热的表示如何以及在多大程度上导致了天然气传输中模拟流量参数与实测流量参数之间的观测偏差。重点研究埋地管道发生的热传递。该研究方法是将模型研究与大量实验成分结合在一起。 ud对出口天然气管道的前12公里进行了仪器检测,并将其用于传热行为的实验研究和结果验证。该 udpipeline部分包含陆上和海上部分。制作了高精度模型。管道上存在的气流仪表的实际数据定义了模型边界处的 dfluided条件。在陆上位置,对管道和周围的土壤进行了检测。测量包括管道壁和土壤高温,土壤湿度和气象量。 ud使用一维流动模型来模拟管道内部的气体流动。此 udmodel耦合到环境域 ud(管壁层和土壤)的三个不同的外部传热模型以进行比较。这些传热模型是管壁层和土壤的一维稳态非稳态,一维径向非稳态和二维非稳态描述。研究了土壤层中的 u传导和对流传热。量化了瞬态边界条件对传热速率和流动参数计算的影响。所开发的模型用于分析和理解实验数据,研究不同外部传热模型的影响,不同传热模式的不相关重要性以及边界条件对管道流量计算的假设。解决了以下研究目标: ud-传热问题的时空表达:外部传热模型的选择对瞬态流动期间 udflow参数的计算精度有何影响?不同的模型在多大程度上掌握了管道周围的物理 ud-控制参数的敏感性:关键的控制环境 ud诸如空气/海水温度的参数以及土壤的热性质影响了流量的计算精度参数? ud-地下水对流和环境边界条件对 ud计算流量参数的影响 ud对模型进行的验证(在延长的时间内进行)和敏感性研究 ud表明,在环境模型中包括储热项具有对计算气体温度的准确性影响最大。气体压力的精度对于热传递模型的选择不太敏感。当使用以径向坐标表示管道和土壤的非稳态热传导模型时,可以大大提高气体温度的计算精度。这证实了较早发表的工作的结论,即使用这种所谓的管壁和土壤的一维径向非稳态模型,即在控制导热系数的过程中包括随时间变化的蓄热项,会导致计算的重大改进瞬态流动过程中的气体温度变化在将FLUENT模型耦合到流模型的基础上,将该模型与ud2D非稳态模型进行了比较。发现一维径向非稳态模型获得的传热响应与瞬态流动条件下几何上更精确的二维非稳态模型非常相似。 ud一维径向非稳态模型的确会导致气体温度误差响应环境温度。对于典型的 udexport天然气管道,发现此错误很小,但对于其他配置,该错误可能很严重。与选择传热模型相比,由周围土壤表面边界条件的定义所引入的误差 ud也较小。 ud结果表明,气体温度对土壤导热系数,内表面导热系数敏感。瞬态流动过程中的膜系数和海水温度土表面边界条件的影响较小。传热模型的 udgover参数的敏感性很大程度上取决于流动条件。结果表明,在自然条件下,自然对流对传热的影响很小,但在固有渗透率较高的情况下,气体对温度的偏差较大。泥,自然对流将扮演重要角色。发现强制对流的作用很小,可以忽略不计。用不同的方法测定土壤的热性质。导热率和热扩散率的结果值 ud在测量精度内彼此一致。在管道周围的土壤中进行的测量表明,热性能在时间上几乎是恒定的。发现了一些时间上的变化,但并未发现这些结果对计算出的传热速率和气体温度有显着影响。实验结果表明,当比较左右方向时,管道周围土壤温度分布的时间变化是不对称的。发现靠近管壁的管子下方的土壤温度低于管壁之上的土壤温度,这与热传导模型的预期相反。在模型中使用强制对流换热和自然对流换热都不能解释这种差异,但是在测量和计算的精确度范围内发现对称性不会显着影响传热速率。与实验期间的实验结果比较较长的时间表明,使用一维径向非定常模型可以在气体温度,压力和壁厚传热方面取得良好的总体一致性。但是,与瞬态流动条件相关的气体,温度和压力偏差仍然会发生。将空气温度用作土壤地表边界条件的一维热力学常数恒定的径向非稳态热传导模型,在大多数实际情况下,将令人满意地近似“响应气体而在土壤中传热和传质的更复杂物理原理”。高温波动和环境参数。

著录项

  • 作者

    Oosterkamp Antonie;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号