首页> 外文期刊>Applied Mathematical Modelling >Parameter estimation by Hellinger type distance for multivariate distributions based upon probability generating functions
【24h】

Parameter estimation by Hellinger type distance for multivariate distributions based upon probability generating functions

机译:基于概率生成函数的多元分布的Hellinger类型距离参数估计

获取原文
获取原文并翻译 | 示例

摘要

Maximum likelihood (ML) estimation is a popular method for parameter estimation when modeling discrete or count observations but unfortunately it may be sensitive to outliers. Alternative robust methods like minimum Hellinger distance (MHD) have been proposed for estimation. However, in the multivariate case, the MHD method leads to computer intensive estimation especially when the joint probability density function is complicated. In this paper, a Hellinger type distance measure based on the probability generating function is proposed as a tool for quick and robust parameter estimation. The proposed method yields consistent estimators, performs well for simulated and real data, and can be computationally much faster than ML or MHD estimation.
机译:当对离散或计数观测值建模时,最大似然(ML)估计是一种用于参数估计的流行方法,但不幸的是,它可能对异常值敏感。已经提出了替代的鲁棒方法,例如最小Hellinger距离(MHD)进行估计。但是,在多变量情况下,尤其是在联合概率密度函数复杂的情况下,MHD方法会导致计算机密集型估计。本文提出了一种基于概率生成函数的Hellinger型距离测度,作为一种快速,鲁棒的参数估计工具。所提出的方法产生一致的估计量,对于模拟和真实数据表现良好,并且计算速度比ML或MHD估计快得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号