首页> 外文期刊>Applied Mathematical Modelling >A hybrid forecasting approach applied in the electrical power system based on data preprocessing, optimization and artificial intelligence algorithms
【24h】

A hybrid forecasting approach applied in the electrical power system based on data preprocessing, optimization and artificial intelligence algorithms

机译:基于数据预处理,优化和人工智能算法的电力系统混合预测方法

获取原文
获取原文并翻译 | 示例

摘要

Data processing, analysis and forecasting by applying artificial intelligence algorithms plays a pivotal role in the big data era. Hybrid forecasting of time series data is considered to be a potentially viable alternative compared with the conventional single forecasting modeling approaches. However, to perform forecasting in the electrical power system has been proven to be a challenging task due to various unstable factors, such as high fluctuations, autocorrelation and stochastic volatility. In this paper, a novel hybrid model that combines denoising methods and optimization algorithms with forecasting techniques is developed to solve the upper problems and forecast the key indicators in the electrical power system, including short-term wind speed, electrical load and electricity price. The proposed model can be applied to forecast the complex electrical power system with a high rate of convergence, forecasting accuracy and a fast computing speed. One of features of this paper is to integrate the already existing algorithms and models, which show a good forecasting performance. The results of three experiments confirm that the proposed hybrid model can satisfactorily approximate the actual value, and it can also be used as an effective and simple tool for planning for smart grids.
机译:应用人工智能算法进行数据处理,分析和预测在大数据时代起着举足轻重的作用。与传统的单一预测建模方法相比,时间序列数据的混合预测被认为是一种可行的选择。但是,由于各种不稳定因素(例如高波动,自相关和随机波动),已证明在电力系统中执行预测是一项艰巨的任务。本文提出了一种将去噪方法和优化算法与预测技术相结合的新型混合模型,以解决上述问题并预测电力系统中的关键指标,包括短期风速,电力负荷和电价。所提出的模型可用于以较高的收敛速度,预测精度和快速计算速度来预测复杂的电力系统。本文的功能之一是集成已经存在的算法和模型,它们显示出良好的预测性能。三个实验的结果证实,所提出的混合模型可以令人满意地逼近实际值,并且可以用作有效且简单的智能电网规划工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号