首页> 外文期刊>Applied Mathematical Modelling >Reduced-order modeling of linear time invariant systems using big bang big crunch optimization and time moment matching method
【24h】

Reduced-order modeling of linear time invariant systems using big bang big crunch optimization and time moment matching method

机译:线性时不变系统的降阶建模,采用大爆炸法和时间矩匹配方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new approach is proposed to approximate the high-order linear time invariant (LTI) system into its low-order model. The proposed approach is a mixed method of model order reduction scheme consisting of recently developed big bang big crunch optimization algorithm and the time-moment matching method. This proposed method is applicable to single-input single-output, multi-input multi-output system, and time delayed LIT systems. The proposed approach is substantiated with various numerical examples of low and high-order systems. The results show that the reduced-order models preserve both transient and steady state conditions of original systems. Further, the results are also compared with the existing approaches of reduced order modeling which show exceptional improvement in integral square error (ISE) and other time domain specifications.
机译:本文提出了一种将高阶线性时不变(LTI)系统近似为其低阶模型的新方法。所提出的方法是一种模型降阶方案的混合方法,包括最近开发的大爆炸大紧缩优化算法和时间矩匹配方法。该方法适用于单输入单输出,多输入多输出系统和时滞LIT系统。所提出的方法以低阶和高阶系统的各种数值示例为依据。结果表明,降阶模型保留了原始系统的瞬态和稳态条件。此外,还将结果与现有的降阶建模方法进行了比较,这些方法显示出积分平方误差(ISE)和其他时域规范的显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号