首页> 外文期刊>Applied Mathematical Modelling >Legendre wavelets method for the numerical solution of fractional integro-differential equations with weakly singular kernel
【24h】

Legendre wavelets method for the numerical solution of fractional integro-differential equations with weakly singular kernel

机译:奇异分数阶积分微分方程数值解的勒让德小波方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, numerical solutions of the linear and nonlinear fractional integro- differential equations with weakly singular kernel where fractional derivatives are considered in the Ca-puto sense, have been obtained by Legendre wavelets method. The block pulse functions and their properties are employed to derive a general procedure for forming the operational matrix of fractional integration for Legendre wavelets. The application of this matrix for solving initial problem is explained. The mentioned equations are transformed into a system of algebraic equations. The error analysis of the proposed method is investigated. Finally, some numerical examples are shown to illustrate the efficiency of the approach.
机译:本文通过Legendre小波方法获得了具有弱奇异核的线性和非线性分数积分微分方程的数值解,其中在Ca-puto意义上考虑了分数导数。块脉冲函数及其特性被用来推导形成勒让德小波分数积分运算矩阵的通用程序。解释了该矩阵在解决初始问题中的应用。提到的方程式转换成代数方程式系统。研究了该方法的误差分析。最后,通过一些数值例子说明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号