首页> 外文期刊>Applied Mathematical Modelling >Multi-fidelity shape optimization of hydraulic turbine runner blades using a multi-objective mesh adaptive direct search algorithm
【24h】

Multi-fidelity shape optimization of hydraulic turbine runner blades using a multi-objective mesh adaptive direct search algorithm

机译:基于多目标网格自适应直接搜索算法的水轮机转轮叶片保真形状优化

获取原文
获取原文并翻译 | 示例

摘要

A robust multi-fidelity design optimization methodology has been developed to integrate advantages of high- and low-fidelity analyses, aiming to help designers reach more efficient turbine runners within reasonable computational time and cost An inexpensive low-fidelity inviscid flow solver handles most of the computational burden by providing data to the optimizer by evaluating objective functions and constraint values in the low-fidelity phase. An open-source derivative-free optimizer, NOMAD, explores the search space, using the multi-objective mesh adaptive direct search optimization algorithm. A versatile filtering algorithm is in charge of connecting low- and high-fidelity phases by selecting among all feasible solutions a few promising solutions which are transferred to the high-fidelity phase. In the high-fidelity phase, a viscous flow solver is used outside the optimization loop to accurately evaluate filtered candidates. High-fidelity analyses results are used to recalibrate the low-fidelity optimization problem. The developed methodology has demonstrated its ability to efficiently redesign a Francis turbine blade for new operating conditions.
机译:已开发出一种强大的多保真度设计优化方法,以整合高保真度和低保真度分析的优势,旨在帮助设计人员在合理的计算时间和成本内达到更高效的涡轮机流道。通过在低逼真度阶段评估目标函数和约束值来向优化器提供数据,从而产生计算负担。开源无导数优化器NOMAD使用多目标网格自适应直接搜索优化算法探索搜索空间。一种通用的滤波算法负责在所有可行的解决方案中选择一些有希望的解决方案,这些方案将转移到高保真度阶段,从而将低保真度和高保真度阶段联系起来。在高保真阶段,在优化循环之外使用粘性流求解器来准确评估过滤后的候选对象。高保真度分析结果用于重新校准低保真度优化问题。所开发的方法论证明了其能够针对新的运行条件有效地重新设计弗朗西斯涡轮叶片的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号