首页> 外文期刊>Applied Intelligence >A self-organization mining based hybrid evolution learning for TSK-type fuzzy model design
【24h】

A self-organization mining based hybrid evolution learning for TSK-type fuzzy model design

机译:基于自组织挖掘的混合进化学习的TSK型模糊模型设计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a self-organization mining based hybrid evolution (SOME) learning algorithm for designing a TSK-type fuzzy model (TFM) is proposed. In the proposed SOME, group-based symbiotic evolution (GSE) is adopted in which each group in the GSE represents a collection of only one fuzzy rule. The proposed SOME consists of structure learning and parameter learning. In structure learning, the proposed SOME uses a two-step self-organization algorithm to decide the suitable number of rules in a TFM. In parameter learning, the proposed SOME uses the data mining based selection strategy and data mining based crossover strategy to decide groups and parental groups by the data mining algorithm that called frequent pattern growth. Illustrative examples were conducted to verify the performance and applicability of the proposed SOME method.
机译:提出了一种基于自组织挖掘的混合进化(SOME)学习算法,用于设计TSK型模糊模型(TFM)。在提出的SOME中,采用了基于组的共生进化(GSE),其中GSE中的每个组仅代表一个模糊规则的集合。提出的SOME包括结构学习和参数学习。在结构学习中,提出的SOME使用两步自组织算法来确定TFM中合适的规则数量。在参数学习中,提出的SOME使用基于数据挖掘的选择策略和基于数据挖掘的交叉策略,通过称为频繁模式增长的数据挖掘算法来确定组和父母组。进行了举例说明,以验证所提出的SOME方法的性能和适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号