首页> 外文期刊>Applied Energy >Distributed model predictive control for joint coordination of demand response and optimal power flow with renewables in smart grid
【24h】

Distributed model predictive control for joint coordination of demand response and optimal power flow with renewables in smart grid

机译:智能电网可再生能源和可再生能源的共同协调分布式模型预测控制

获取原文
获取原文并翻译 | 示例

摘要

Demand response is an emerging application of smart grid in exploiting timely interactions between utilities and their customers to improve the reliability and sustainability of power networks. This paper investigates the joint coordination of demand response and AC optimal power flow with curtailment of renewable energy resources to not only save the total amount of power generation costs, renewable energy curtailment costs and price-elastic demand costs but also manage the fluctuation of the overall power load under various types of demand response constraints and grid operational constraints. Its online implementation is very challenging since the future power demand is unpredictable with unknown statistics. Centralized and distributed model predictive control (CMPC and DMPC)-based methods are respectively proposed for the centralized and distributed computation of the online scheduling problem. The CMPC can provide a baseline solution for the DMPC. The DMPC is quite challenging that invokes distributed computation of a nonconvex optimization problem at each time slot. A novel alternating direction method of multipliers (ADMM)-based DMPC algorithm is proposed for this challenging DMPC. It involves an iterative subroutine computation during the update procedure of primal variables that can efficiently handle the difficult nonconvex constraints. Comprehensive experiments have been conducted to test the proposed methods. Simulation results show that the gap in objective values between the DMPC and its baseline counterpart (CMPC) are all within 1%, further verifying the effectiveness of the proposed ADMM-based DMPC algorithm.
机译:需求响应是智能电网的新兴应用,以利用公用事业和客户之间的及时互动,以提高电网的可靠性和可持续性。本文调查了需求响应和交流最优功率流量的联合协调,缩减可再生能源,不仅节省了能源成本,可再生能源缩减成本和价格弹性需求成本,而且还管理整体的波动各种类型的需求响应约束和网格运行约束下的电力负载。由于未知的统计数据,其在线实施是非常具有挑战性的,因为未知的统计数据不可预测。分别为在线调度问题的集中式和分布式计算,分别提出了基于集中式和分布式模型预测控制(CMPC和DMPC)的方法。 CMPC可以为DMPC提供基线解决线。 DMPC非常具有挑战性,其调用每个时隙时的非凸化优化问题的分布式计算。为此具有挑战性的DMPC提出了一种基于乘法器(ADMM)的新的交替方向方法(ADMM)的DMPC算法。它涉及在最新变量的更新过程中迭代子程序计算,其可以有效地处理困难的非核解约束。已经进行了综合实验以测试所提出的方法。仿真结果表明,DMPC与其基线对应物(CMPC)之间的客观值中的间隙均为1%,进一步验证了基于ADMM的DMPC算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号