首页> 外文期刊>Applied Energy >On greenhouse gas emissions and thermal efficiency of natural gas/diesel dual-fuel engine at low load conditions: Coupled effect of injector rail pressure and split injection
【24h】

On greenhouse gas emissions and thermal efficiency of natural gas/diesel dual-fuel engine at low load conditions: Coupled effect of injector rail pressure and split injection

机译:低负荷条件下天然气/柴油双燃料发动机的温室气体排放和热效率:喷油器轨压和分流喷油的耦合效应

获取原文
获取原文并翻译 | 示例
       

摘要

Replacing diesel by natural gas in diesel engine is of great interest for transportation and power station industry due to larger availability and lower environmental impact of natural gas compared to diesel fuel. However, natural gas/diesel dual-fuel (NDDF) engine has lower thermal efficiency and produces higher greenhouse gas (GHG) emissions than its counterpart diesel engine at low load conditions when conventional diesel combustion strategy is used. In order to overcome this drawback, the present paper experimentally and numerically investigates the coupling of two strategies; namely increasing diesel injection rail pressure and splitting diesel injection of a heavy-duty NDDF engine at low engine load conditions. The results revealed that increasing the injection rail pressure decreases thermal efficiency of the NDDF engine with split injection as a result of overly advanced combustion phasing. However, a higher thermal efficiency (37.2%), than that of the diesel-only and the NDDF engine with a single injection, can be achieved under optimized combustion phasing. Increasing the injection rail pressure significantly reduces the unburned methane emissions of the NDDF engine with split injection, especially at lower split ratios (mass of the injected diesel in the first pulse divided by that of the total injected diesel). However, increasing the injection rail pressure does not affect the unburned methane emissions under a split ratio of 65%. This is due to the fact that a larger portion of diesel fuel impinges onto the cylinder wall surface as revealed by the simulation results. The optimum methane emissions of the NDDF engine with split injection is reduced by 50% compared to the best condition of the NDDF engine with a single injection. Moreover, the indicated specific carbon dioxide equivalent (ISCO2-equivalent) emissions of the NDDF engine with split injection are reduced by 11% compared to those of the NDDF engine with a single injection and diesel only engine. All in all, the present study demonstrated that thermal efficiency and GHG emissions of the NDDF engine can be further improved when simultaneously varying diesel fuel injection split ratio and rail pressure increase. This strategy is also found to help reducing pressure rise rate (PRR) and NOx and soot emissions.
机译:在柴油发动机中用天然气代替柴油对运输和发电站行业非常重要,因为与柴油相比,天然气的可用性更高,对环境的影响也较小。但是,使用常规柴油机燃烧策略时,在低负载条件下,天然气/柴油双燃料(NDDF)发动机的热效率较低,并产生较高的温室气体(GHG)排放。为了克服这个缺点,本文通过实验和数值研究了两种策略的耦合。也就是说,在低发动机负载条件下增加重型NDDF发动机的柴油喷射导轨压力和分流柴油喷射。结果表明,由于过分提前的燃烧定相,增加分流喷射的喷油嘴压力会降低NDDF发动机的热效率。但是,在优化燃烧定相的情况下,可以实现比仅柴油机和NDDF发动机单次喷射更高的热效率(37.2%)。增加喷射导轨压力会显着减少分流喷射时NDDF发动机的未燃烧甲烷排放,尤其是在较低的分流比下(第一脉冲中喷射的柴油质量除以总喷射柴油的质量)。但是,在分流比为65%的情况下,增加喷射导轨压力不会影响未燃烧的甲烷排放。这是由于这样的事实,如模拟结果所揭示的,柴油中的较大部分撞击在气缸壁表面上。与单次喷射的NDDF发动机的最佳状态相比,分次喷射的NDDF发动机的最佳甲烷排放降低了50%。此外,与单喷射和仅柴油机的NDDF发动机相比,分流喷射的NDDF发动机的标称二氧化碳当量(ISCO2当量)排放降低了11%。总而言之,本研究表明,当同时改变柴油喷射分配比和导轨压力增加时,NDDF发动机的热效率和温室气体排放可以进一步提高。还发现该策略有助于降低压力上升率(PRR)以及NOx和烟尘排放。

著录项

  • 来源
    《Applied Energy》 |2019年第1284期|216-231|共16页
  • 作者单位

    Univ Manitoba, Dept Mech Engn, Winnipeg, MB R3T 5V6, Canada;

    Natl Res Council Canada, Energy Min & Environm Res Ctr, 1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada;

    Univ Manitoba, Dept Mech Engn, Winnipeg, MB R3T 5V6, Canada;

    Natl Res Council Canada, Energy Min & Environm Res Ctr, 1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dual-fuel engine; Natural gas/diesel; Diesel split injection; Injection rail pressure;

    机译:双燃料发动机;天然气/柴油;柴油分流喷射;喷射轨压力;
  • 入库时间 2022-08-18 04:19:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号