首页> 外文期刊>Applied computational intelligence and soft computing >Representation for Action Recognition Using Trajectory-Based Low-Level Local Feature and Mid-Level Motion Feature
【24h】

Representation for Action Recognition Using Trajectory-Based Low-Level Local Feature and Mid-Level Motion Feature

机译:使用基于轨迹的低层局部特征和中层运动特征进行动作识别的表示

获取原文
获取原文并翻译 | 示例

摘要

The dense trajectories and low-level local features are widely used in action recognition recently. However, most of these methods ignore the motion part of action which is the key factor to distinguish the different human action. This paper proposes a new two-layer model of representation for action recognition by describing the video with low-level features and mid-level motion part model. Firstly, we encode the compensated flow (w-flow) trajectory-based local features with Fisher Vector (FV) to retain the low-level characteristic of motion. Then, the motion parts are extracted by clustering the similar trajectories with spatiotemporal distance between trajectories. Finally the representation for action video is the concatenation of low-level descriptors encoding vector and motion part encoding vector. It is used as input to the LibSVM for action recognition. The experiment results demonstrate the improvements on J-HMDB and YouTube datasets, which obtain 67.4% and 87.6%, respectively.
机译:密集的轨迹和低水平的局部特征最近在动作识别中被广泛使用。但是,这些方法大多数都忽略了动作的运动部分,这是区分不同人类动作的关键因素。本文通过描述具有低级特征的视频和中级运动部分模型,提出了一种新的两层表示模型,用于动作识别。首先,我们使用Fisher Vector(FV)对基于补偿流(w流)轨迹的局部特征进行编码,以保留运动的低级特征。然后,通过将相似的轨迹与轨迹之间的时空距离进行聚类来提取运动部分。最后,动作视频的表示是低级描述符编码向量和运动部分编码向量的串联。它用作LibSVM的输入以进行动作识别。实验结果证明了对J-HMDB和YouTube数据集的改进,分别获得了67.4%和87.6%。

著录项

  • 来源
    《Applied computational intelligence and soft computing》 |2017年第2017期|4019213.1-4019213.7|共7页
  • 作者单位

    School of Computer Engineering and Sciences, Shanghai University, Shanghai 200444, China;

    School of Computer Engineering and Sciences, Shanghai University, Shanghai 200444, China;

    School of Computer Engineering and Sciences, Shanghai University, Shanghai 200444, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号