首页> 外文期刊>Neurocomputing >Sparse representation of local spatial-temporal features with dimensionality reduction for motion recognition
【24h】

Sparse representation of local spatial-temporal features with dimensionality reduction for motion recognition

机译:用于运动识别的降维的局部时空特征的稀疏表示

获取原文
获取原文并翻译 | 示例

摘要

Sparse representation and compressive sensing have attracted substantial interests in computer vision. In this paper, by introducing two new classification criteria, we extended the sparse representation classification method (SRC) for individual images to classify a video that contains a group of local spatial-temporal features. A dictionary is constructed by concatenating all class-specific dictionaries, each of which is learned from a motion class. A test video is assigned to a class label based on the minimum of reconstruction errors of individual local features or overall reconstruction error. Moreover, we compared the effectiveness of the traditional Principal Component Analysis (PCA) and two compressive sensing based dimensionality reduction methods, i.e., Random Matrix projection and Hash Matrix projection in the framework of sparse representation for motion recognition. Experimental results on four public datasets including hand gesture, human facial, human action and mouse behavior demonstrate that the proposed method achieves comparable or higher recognition accuracies compared to other state-of-the-art methods in the literatures. Although the traditional PCA requires more computation to get the transformation matrix, it performs better than the Random Matrix and Hash Matrix projections using gradient features. However, when raw features (i.e., pixel values) are used, the performance of the Random Matrix and Hash Matrix projections is significantly improved.
机译:稀疏表示和压缩感测已引起计算机视觉的极大兴趣。在本文中,通过引入两个新的分类标准,我们扩展了针对单个图像的稀疏表示分类方法(SRC),以对包含一组局部时空特征的视频进行分类。通过连接所有特定于类的字典来构造字典,每个字典都是从运动类中学习的。根据单个局部特征的重建误差或整体重建误差的最小值,将测试视频分配给类别标签。此外,我们在稀疏表示的运动识别框架内比较了传统主成分分析(PCA)和两种基于压缩感知的降维方法(即随机矩阵投影和哈希矩阵投影)的有效性。在包括手势,人脸,人的动作和鼠标行为的四个公共数据集上的实验结果表明,与文献中的其他最新技术相比,该方法可实现可比或更高的识别精度。尽管传统的PCA需要更多的计算才能获得变换矩阵,但与使用梯度特征的随机矩阵和哈希矩阵投影相比,它的性能更好。但是,当使用原始特征(即,像素值)时,随机矩阵和哈希矩阵投影的性能得到显着改善。

著录项

  • 来源
    《Neurocomputing》 |2013年第4期|150-160|共11页
  • 作者单位

    Center for Intelligent Systems Research, Deakin University, Waurn Ponds 3216, Australia, Institute for Frontier Materials, Deakin University, Waurn Ponds 3216, Australia;

    Center for Intelligent Systems Research, Deakin University, Waurn Ponds 3216, Australia, Institute for Frontier Materials, Deakin University, Waurn Ponds 3216, Australia;

    Department of Computer Science and Engineering, University of South Carolina, USA;

    Center for Intelligent Systems Research, Deakin University, Waurn Ponds 3216, Australia, Institute for Frontier Materials, Deakin University, Waurn Ponds 3216, Australia;

    Institute for Frontier Materials, Deakin University, Waurn Ponds 3216, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Motion analysis; Sparse coding; Compressive sensing; Interest points;

    机译:运动分析;稀疏编码;压缩感测;兴趣点;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号