首页> 外文期刊>Applied Computational Electromagnetics Society journal >Performance of Preconditioned Krylov Iterative Methods for Solving Hybrid Integral Equations in Electromagnetics
【24h】

Performance of Preconditioned Krylov Iterative Methods for Solving Hybrid Integral Equations in Electromagnetics

机译:预处理Krylov迭代法求解电磁混合积分方程的性能

获取原文
获取原文并翻译 | 示例

摘要

In solving systems of linear equations arising from practical engineering models such as the electromagnetic wave scattering problems, it is critical to choose a fast and robust solver. Due to the large scale of those problems, preconditioned Krylov iterative methods are most suitable. The Krylov iterative methods require the computation of matrix-vector product operations at each iteration, which account for the major computational cost of this class of methods. We use the multilevel fast multipole algorithm (MLFMA) to reduce the computational complexity of the matrix-vector product operations. We conduct an experimental study on the behavior of three Krylov iterative methods, BiCG, BiCGSTAB, and TPQMR, and of two preconditioners, the ILUT preconditioner, and the sparse approximate inverse (SAI) precon-ditioner. The preconditioners are constructed by using the near part matrix numerically generated in the MLFMA. Our experimental results indicate that a well chosen preconditioned Krylov iterative method maintains the computational complexity of the MLPMA and effectively reduces the overall simulation time.
机译:在求解由实际工程模型(例如电磁波散射问题)引起的线性方程组时,选择快速而强大的求解器至关重要。由于这些问题的规模很大,因此预处理Krylov迭代方法最适合。克雷洛夫(Krylov)迭代方法要求在每次迭代时都计算矩阵向量乘积运算,这占了此类方法的主要计算成本。我们使用多级快速多极算法(MLFMA)来降低矩阵向量乘积运算的计算复杂度。我们对三种Krylov迭代方法BiCG,BiCGSTAB和TPQMR以及两种预处理器ILUT预处理器和稀疏近似逆(SAI)预处理器的行为进行了实验研究。通过使用在MLFMA中数字生成的近部分矩阵构造预调节器。我们的实验结果表明,精心选择的预处理Krylov迭代方法可保持MLPMA的计算复杂性,并有效减少总体仿真时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号