首页> 外文期刊>Applied Artificial Intelligence >Problem Specific Variable Selection Rules for Constraint Programming: A Type Ⅱ Mixed Model Assembly Line Balancing Problem Case
【24h】

Problem Specific Variable Selection Rules for Constraint Programming: A Type Ⅱ Mixed Model Assembly Line Balancing Problem Case

机译:限制编程的问题特定变量选择规则:Ⅱ型混合模型装配线平衡问题案例

获取原文
获取原文并翻译 | 示例

摘要

ABSRACT The main idea of constraint programming (CP) is to determine a solution (or solutions) of a problem assigning values to decision variables satisfying all constraints. Two sub processes, an enumeration strategy and a consistency, run under the constraint programming main algorithm. The enumeration strategy which is managing the order of variables and values to build a search tree and possible solutions is crucial process in CP. In this study problem-based specific variable selection rules are studied on a mixed model assembly line balancing problem. The 18 variable selection rules are generated in three main categories by considering the problem input parameters. These rules are tested with benchmark problems in the literature and experimental results are compared with the results of mathematical model and standard CP algorithm. Also, benchmark problems are run with two CP rules to compare experimental results. In conclusion, experimental results are shown that the outperform rules are listed and also their specifications are defined to guide to researchers who solve optimization problems with CP.
机译:AbsRact的约束编程(CP)的主要思想是确定将值分配给满足所有约束的判定变量的问题的解决方案(或解决方案)。两个子进程,枚举策略和一致性,在约束编程主算法下运行。管理变量顺序和构建搜索树的枚举策略以及可能的解决方案是CP中的重要过程。在本研究中,在混合模型装配线平衡问题上研究了基于问题的特定变量选择规则。通过考虑问题输入参数,在三个主要类别中生成18个变量选择规则。这些规则在文献中的基准问题和实验结果进行了测试,与数学模型和标准CP算法的结果进行了比较。此外,基准问题与两个CP规则一起运行以比较实验结果。总之,实验结果表明,列出了优势规则,并且它们的规格也被定义为研究CP解决优化问题的研究人员。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2020年第8期|564-584|共21页
  • 作者单位

    Kirikkale Univ Fac Engn Dept Ind Engn Ankara Yolu 7 Km TR-71451 Kirikkale Turkey;

    Gazi Univ Fac Engn Dept Ind Engn Ankara Turkey;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号