首页> 外文期刊>Applied Artificial Intelligence >HYBRID GREY RELATIONAL ARTIFICIAL NEURAL NETWORK AND AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR FORECASTING TIME-SERIES DATA
【24h】

HYBRID GREY RELATIONAL ARTIFICIAL NEURAL NETWORK AND AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR FORECASTING TIME-SERIES DATA

机译:预测时间序列数据的混合灰色关联人工神经网络和自动递归综合移动平均模型

获取原文
获取原文并翻译 | 示例

摘要

The aim of this study is to develop a new hybrid model by combining a linear and nonlinear model for forecasting time-series data. The proposed model (GRANN_ARIMA) integrates nonlinear grey relational artificial neural network (GRANN) and a linear autoregressive integrated moving average (ARIMA) model by combining new features and grey relational analysis to select the appropriate inputs and hybridization succession. To validate the performance of the proposed model, small and large scale data sets are used. The forecasting performance is compared with several models, and these include: individual models (ARIMA, multiple regression, GRANN), several hybrid models (MARMA, MR_ANN, ARIMA_ANN), and an artificial neural network (ANN) trained using a Levenberg Marquardt algorithm. The experiments have shown that the proposed model has outperformed other models with 99.5% forecasting accuracy for small-scale data and 99.84% for large-scale data. The obtained empirical results have proven that the GRANN_ARIMA model can provide a better alternative for time-series forecasting due to its promising performance and capability in handling time-series data for both small- and large-scale data.
机译:这项研究的目的是通过组合线性和非线性模型来预测时间序列数据,以开发一种新的混合模型。所提出的模型(GRANN_ARIMA)通过将新特征和灰色关联分析相结合,选择合适的输入并进行杂交,将非线性灰色关联人工神经网络(GRANN)和线性自回归综合移动平均(ARIMA)模型集成在一起。为了验证所提出模型的性能,使用了小型和大型数据集。将预测性能与几种模型进行比较,其中包括:单个模型(ARIMA,多元回归,GRANN),几种混合模型(MARMA,MR_ANN,ARIMA_ANN)以及使用Levenberg Marquardt算法训练的人工神经网络(ANN)。实验表明,所提出的模型优于其他模型,对小规模数据的预测准确性为99.5%,对大数据的预测准确性为99.84%。所获得的经验结果证明,GRANN_ARIMA模型具有良好的性能和处理小型和大型数据的时序数据的能力,因此可以为时序预测提供更好的选择。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2009年第5期|443-486|共44页
  • 作者单位

    Department of Computer Science and Information Systems, Universiti Teknologi Malaysia, Skudai, Johor 81300, Malaysia;

    Department of Computer Science and Information Systems, Universiti Teknologi Malaysia, Johor, Malaysia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号