首页> 外文会议>IEEE International Conference on Computation, Communication and Engineering >The Performance of Grey Model and Auto-Regressive Integrated Moving Average for Human Resources Prediction in China
【24h】

The Performance of Grey Model and Auto-Regressive Integrated Moving Average for Human Resources Prediction in China

机译:中国人力资源预测的灰色模型和自回归综合移动平均线的性能

获取原文

摘要

The human resource of planning involves using any number of sophisticated statistical procedures based on the analysis. At a more practical level, prediction demand involves determining the numbers and kinds of personnel that an organization will need at some point in the future. This research compared the forecasting performance between GM (1, 1), ARIMA, and GMARIMA to determine the best method to predict the number of Human Resources in China. The GM-ARIMA model is to establish a GM (1,1) model concerning the ARIMA model residual value and add the resulting residual prediction value to the original predicted value of the ARIMA model to compensate for the original predicted value and obtain GMARIMA model of the forecast results. Experimental results present that GM-ARIMA can be an effective way to improve prediction accuracy achieved by either of the models used separately.
机译:计划的人力资源包括基于分析使用许多复杂的统计程序。在更实际的水平上,预测需求涉及确定组织将来某个时候需要的人员数量和种类。本研究比较了GM(1,1),ARIMA和GMARIMA之间的预测性能,以确定预测中国人力资源数量的最佳方法。 GM-ARIMA模型用于建立与ARIMA模型残值有关的GM(1,1)模型,并将所得残差预测值添加到ARIMA模型的原始预测值中,以补偿原始预测值,并获得GMARIMA模型。预测结果。实验结果表明,GM-ARIMA可以是一种有效的方法,可以通过单独使用这两种模型来提高预测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号