首页> 外文期刊>Applied Artificial Intelligence >SPEECH/MUSIC DISCRIMINATION BASED ON WARPING TRANSFORMATION AND FUZZY LOGIC FOR INTELLIGENT AUDIO CODING
【24h】

SPEECH/MUSIC DISCRIMINATION BASED ON WARPING TRANSFORMATION AND FUZZY LOGIC FOR INTELLIGENT AUDIO CODING

机译:基于Warping变换和模糊逻辑的智能音频编码语音/音乐识别

获取原文
获取原文并翻译 | 示例

摘要

Automatic discrimination of speech and music is an important tool in many multimedia applications. This article presents an evolutionary, fuzzy, rules-based speech/music discrimination approach for intelligent audio coding, which exploits only one simple feature, called Warped LPC-based Spectral Centroid (WLPC-SC). Comparison between WLPC-SC and the classical features proposed in the literature for audio classification is performed, aiming to assess the good discriminatory power of the proposed feature. The length of the vector for describing the proposed psychoacoustic-based feature is reduced to a few statistical values (mean, variance, and skewness), which are then transformed to a new feature space, applying linear discriminant analysis (IDA), with the aim of increasing the classification accuracy percentage. The classification task is performed applying a support vector machine (SVM) to the features in the transformed space. The final decision is made by a fuzzy expert system, which improves the accuracy rate provided by the SVM, taking into account the audio labels assigned by this classifier to past audio frames. The accuracy rate improvement due to the fuzzy expert system is also reported. Experimental results reveal that our speech/music discriminator is robust and fast, making it suitable for intelligent audio coding.
机译:语音和音乐的自动判别是许多多媒体应用程序中的重要工具。本文为智能音频编码提供了一种基于规则的进化,模糊,语音/音乐鉴别方法,该方法仅利用了一个简单的功能,即基于扭曲LPC的频谱质心(WLPC-SC)。进行了WLPC-SC和文献中提出的用于音频分类的经典特征之间的比较,旨在评估该特征的良好区分能力。用于描述建议的基于心理声学特征的向量的长度减少到几个统计值(均值,方差和偏度),然后将其转化为新的特征空间,并应用线性判别分析(IDA),目的是提高分类准确率的百分比。通过将支持向量机(SVM)应用于变换空间中的要素来执行分类任务。最后的决定是由模糊专家系统做出的,它会考虑到该分类器分配给过去音频帧的音频标签,从而提高了SVM提供的准确率。还报告了由于模糊专家系统而导致的准确率提高。实验结果表明,我们的语音/音乐鉴别器健壮且快速,使其适用于智能音频编码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号