首页> 外文期刊>Applied Artificial Intelligence >IMIOL: A SYSTEM FOR INDEXING IMAGES BY THEIR SEMANTIC CONTENT BASED ON POSSIBILISTIC FUZZY CLUSTERING AND ADAPTIVE RESONANCE THEORY NEURAL NETWORKS LEARNING
【24h】

IMIOL: A SYSTEM FOR INDEXING IMAGES BY THEIR SEMANTIC CONTENT BASED ON POSSIBILISTIC FUZZY CLUSTERING AND ADAPTIVE RESONANCE THEORY NEURAL NETWORKS LEARNING

机译:IMIOL:一种基于可能的模糊聚类和自适应共振理论神经网络学习的语义内容索引系统

获取原文
获取原文并翻译 | 示例

摘要

Image databases are becoming large and of potential use in many areas, including medical diagnosis, astronomy, and the Web. These images, if analyzed, can reveal useful and potential information. Image indexing is the process of extracting and modeling the content of the image, the image data relationships, or other patterns not explicitly stored. Done this way, images could be indexed with the extracted knowledge, and thereby searching in these large databases for a particular information or pattern becomes more efficient and more reliable. For example, a medical doctor can search a medical database for already-diagnosed patient images having the same symptoms as the one at hand. Here we present a model for image indexing that bridges the gap between the visual content (or low-level descriptors) and the semantic content (or concepts). In our proposal, an image is modeled as being a set of objects, and each object is modeled with visual and semantics contents. Determination of the distinct objects (or segmentation) of the image is achieved through Possibilistic Fuzzy clustering. Thereafter, the visual content (namely, color, texture, and shape) of each object is computed using image processing techniques. Subsequently, each object is presented to the Concept Object Knowledge Base (COKB) for extraction of the semantic content using shape-based recognition. This knowledge base is constructed via neural learning with Adaptive Resonance Theory networks. Experimentation on standard large image databases reveal a good performance of our model.
机译:图像数据库正在变得庞大,并在许多领域具有潜在的用途,包括医学诊断,天文学和Web。如果对这些图像进行分析,可以揭示有用的和潜在的信息。图像索引是提取和建模图像内容,图像数据关系或其他未明确存储的模式的过程。通过这种方式,可以使用提取的知识对图像进行索引,从而在这些大型数据库中搜索特定信息或模式变得更加高效和可靠。例如,医生可以在医学数据库中搜索与症状相似的已经诊断出的患者图像。在这里,我们提出了一种用于图像索引的模型,该模型弥合了可视内容(或低级描述符)和语义内容(或概念)之间的差距。在我们的建议中,图像被建模为一组对象,并且每个对象都使用视觉和语义内容进行建模。通过可能性模糊聚类确定图像的不同对象(或分割)。此后,使用图像处理技术计算每个对象的视觉内容(即,颜色,纹理和形状)。随后,将每个对象呈现给概念对象知识库(COKB),以使用基于形状的识别来提取语义内容。该知识库是通过使用自适应共振理论网络进行神经学习而构建的。在标准的大图像数据库上进行的实验显示了我们模型的良好性能。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2010年第10期|p.821-846|共26页
  • 作者单位

    Prince Research Group, University of Monastir, Tunisia;

    rnEcole Centrale Paris, Chatenay-Malabry, France;

    Prince Research Group, University of Monastir, Tunisia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号