首页> 外文期刊>IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews >Classification of multispectral images based on a fuzzy-possibilistic neural network
【24h】

Classification of multispectral images based on a fuzzy-possibilistic neural network

机译:基于模糊可能神经网络的多光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new Hopfield-model net based on fuzzy possibilistic reasoning is proposed for the classification of multispectral images. The main purpose is to modify the Hopfield network embedded with fuzzy possibilistic C-means (FPCM) method to construct a classification system named fuzzy-possibilistic Hopfield net (FPHN). The classification system is a paradigm for the implementation of fuzzy logic systems in neural network architecture. Instead of one state in a neuron for the conventional Hopfield nets, each neuron occupies 2 states called membership state and typicality state in the proposed FPHN. The proposed network not only solves the noise sensitivity fault of Fuzzy C-means (FCM) but also overcomes the simultaneous clustering problem of possibilistic C-means (PCM) strategy. In addition to the same characteristics as the FPCM algorithm, the simple features of this network are clear potential in optimal problem. The experimental results show that the proposed FPHN can obtain better solutions in the classification of multispectral images.
机译:提出了一种基于模糊可能性推理的新型Hopfield模型网络,用于多光谱图像的分类。主要目的是修改嵌入有模糊可能性C均值(FPCM)方法的Hopfield网络,以构建一个名为模糊可能性Hopfield网络(FPHN)的分类系统。分类系统是在神经网络体系结构中实施模糊逻辑系统的范例。代替常规Hopfield网络的神经元中的一个状态,在所提出的FPHN中,每个神经元都占据2个状态,分别称为隶属状态和典型状态。该网络不仅解决了模糊C均值(FCM)的噪声敏感性故障,而且克服了可能的C均值(PCM)策略的同时聚类问题。除了具有与FPCM算法相同的特征外,该网络的简单特征在最佳问题上也具有明显的潜力。实验结果表明,所提出的FPHN可以在多光谱图像分类中获得更好的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号