首页> 外文期刊>Applied Artificial Intelligence >AUTOMATIC EXTRACTION OF GO GAME POSITIONS FROM IMAGES: A MULTI-STRATEGICAL APPROACH TO CONSTRAINED MULTI-OBJECT RECOGNITION
【24h】

AUTOMATIC EXTRACTION OF GO GAME POSITIONS FROM IMAGES: A MULTI-STRATEGICAL APPROACH TO CONSTRAINED MULTI-OBJECT RECOGNITION

机译:从图像中自动提取游戏对象位置:约束多对象识别的多策略方法

获取原文
获取原文并翻译 | 示例

摘要

Here, we present a constrained object recognition task that has been robustly solved largely with simple machine learning methods, using a small corpus of about 100 images taken under a variety of lighting conditions. The task was to analyze images from a hand-held mobile, phone camera showing an endgame, position for the Japanese board game Go. The presented system would already be, sufficient to reconstruct the full Go game record from a video record of the game and thus is complementary to Seewald (2003), which focuses on solving the. same task using different sensors. The presented system is robust to a variety of lighting conditions, works with cheap low-quality cameras, and is resistant to changes in board or camera position without the need for any manual calibration.
机译:在这里,我们提出了一种受约束的对象识别任务,该任务已通过简单的机器学习方法得到了有效解决,该任务使用了在各种光照条件下拍摄的约100张图像的小型语料库。任务是分析手持式手机摄像头的图像,显​​示日本棋盘游戏Go的残局位置。所提出的系统已经足以从游戏的视频记录中重建完整的Go游戏记录,因此是对Seewald(2003)的补充,后者致力于解决这一问题。使用不同的传感器完成相同的任务。所提出的系统在各种照明条件下均很稳定,可与廉价的低质量相机配合使用,并且无需任何手动校准即可抵抗电路板或相机位置的变化。

著录项

  • 来源
    《Applied Artificial Intelligence》 |2010年第4期|P.233-252|共20页
  • 作者

    Alexander K. Seewald;

  • 作者单位

    Seewald Solutions, Vienna, Austria Leitermayergasse 33/24, Vienna 1180,Austria;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号