首页> 外文期刊>Journal of testing and evaluation >Automatic Recognition and Positioning of Wheel Defects in Ultrasonic B-Scan Image Using Artificial Neural Network and Image Processing
【24h】

Automatic Recognition and Positioning of Wheel Defects in Ultrasonic B-Scan Image Using Artificial Neural Network and Image Processing

机译:利用人工神经网络和图像处理技术自动识别和定位超声波B扫描图像中的车轮缺陷

获取原文
获取原文并翻译 | 示例

摘要

Wheels are one of the most important testing components in rail transport that play a significantrole in the safety of train, and thence, research on wheel defect detection is of greatsignificance. In this article, a method using image processing techniques and artificial neuralnetwork techniques is proposed for the purpose of recognizing defects in ultrasound B-scanimage. A noise reduction and filtering algorithm and a feature extraction algorithm are proposedto simplify identification steps and improve the accuracy of the later recognition. Then,two back propagation neural networks with two hidden layers are built respectively for twoclassification steps. One is to identify noise, while the other is to identify the echo of realdefects. Finally, a 93 % recognition rate is achieved by using the algorithm proposed in thisarticle. The result shows that appropriate feature extraction algorithms and artificial neuralnetwork techniques are efficient and reliable in defects recognition of ultrasound B-scanimages.
机译:车轮是铁路运输中最重要的测试部件之一,对火车的安全起着举足轻重的作用,因此,车轮缺陷检测的研究意义重大。在本文中,为了识别超声B扫描图像中的缺陷,提出了一种使用图像处理技术和人工神经网络技术的方法。提出了一种降噪滤波算法和特征提取算法,以简化识别步骤,提高后期识别的准确性。然后,分别构建了两个具有两个隐藏层的反向传播神经网络,用于两个分类步骤。一种是识别噪声,另一种是识别真实缺陷的回波。最后,使用本文提出的算法可以达到93%的识别率。结果表明,适当的特征提取算法和人工神经网络技术在超声波B扫描图像的缺陷识别中是有效和可靠的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号